Practical measures for reducing phosphorus and faecal microbial loads from onsite wastewater treatment system discharges to the environment: A review ## **Key Findings** Onsite wastewater treatment systems (OWTS), the majority of which are septic tanks, are a contributing factor to phosphorus and faecal microbial loads. OWTS contribute to waterbodies failing to meet Water Framework Directive (WFD) objectives and as such, measures to improve the quality of OWTS discharges are required. Literature has been reviewed for a range of measures designed to reduce phosphorus and pathogen concentrations in effluent from OWTS. A feasibility assessment focussed on their application, effectiveness, efficiency, cost and ease of adaptation. A wide range of measures have been identified that could potentially improve water quality. Results show no one solution could be applied to reduce phosphorus and pathogen loadings to the water environment. The literature suggests that OWTS need to be designed to the local flow and load characteristics of the effluents streams, as well as site specific conditions. With that in mind, measures such as awareness raising, site planning, and maintenance are likely to contribute to reduction of impact of OWTS on the environment. The level of load reduction possible from measures such as awareness raising is difficult to quantify, but it is low-cost and relatively easy to implement. Those most effective for phosphorus and pathogen removal are post-tank measures that maximise physical removal, through adsorption and filtering, and maintain good conditions for biological breakdown of solids and predation of pathogens. A full summary of the measures reviewed is presented in Section 7 of the report. The following table presents a selection of the most practical measures to reduce P or pathogen releases from OWTS. | Measure | Removal of P
possible | Removal of pathogens possible | Practicality | Site requirements | Cost | Likely uptake | |---|---------------------------|-------------------------------|--|--|---|------------------------------------| | Using P-free detergents | Yes - up to 50% | No | Legislation will ensure this is implemented | None | Low | Guaranteed | | Reducing food
waste flushed
to drains | Yes - quantity
unknown | Unknown | Awareness raising could assist. May be more practical for hotels, restaurants | None | Low - awareness raising | Possible with awareness raising | | Appropriate site and setback distances | Likely | Likely | May require change
in building regulations
(linked to risk based
approach) | Increased distance to water body | Related to increased land take and pipe distances | Possible | | Risk based measures | Unknown | Unknown | Targeting measures to most at risk sites | None | Cost of consultation, deregulation | Currently being applied in England | | Awareness raising | Unknown | Unknown | Practical if providing advice on operations, inspection and maintenance | None | Low if electronic;
costs associated
with leaflets or
public events | Likely | | Replacing old tanks
with new tanks:
Tank design
(baffles and shape) | Yes | Yes | Practical where current
system is poorly
functioning. Baffles may
be more practical for
pathogen reduction than
P reduction | Access for machinery
and adequate space
for new system | High | Possible | | Increased Hydraulic
Retention Time
(HRT) – correcting
misconnections | Yes | Yes | Practical as an inspection
measure for site owners/
occupiers to improve
function | Access to pipe connections and knowledge of OWTS | Low | Likely | | Increased HRT - desludging | Unknown | Yes | Practical as a
maintenance measure;
may have unintended
impact on P releases | Access to desludging equipment; consideration of end use of sludge | Relatively low | Likely | | Measure | Removal of
P possible | Removal of pathogens possible | Practicality | Site requirements | Cost | Likely uptake | |---|--------------------------|-------------------------------|---|--|--|---------------------------------------| | Introducing chemical additives | Yes | Yes | Depends on site, scale of improvement required and dosing mechanism. In tank chemical use may destabilise microbes | Access for dosing,
may be more suited to
multi-chamber system.
May require electricity | Medium (depending
on additive and
dosing frequency) | Possibly as a polishing step | | Soak away,
drainfield, or
mound system | Yes | Yes | Could provide additional treatment at sites with direct discharges to water body | Land requirement,
suitable soil conditions
and slope. Electricity
need if pumps used | High, depending
on level of site work
required | Likely | | Lagoons/WSP | Yes | Yes | Depends on site and polishing requirement. Can allow for UV treatment or chlorination | Land requirement, and protections against exposure to pathogens | Installation and
maintenance costs
may be high | Possible | | Removing P from discharged effluent using ochre | Yes | Unknown | Depends on site and polishing requirement, could dose in WSP or use as filter medium | Land requirement for
treatment area, or
dosing mechanism | High | Possible for additional polishing | | Constructed wetland | Yes | Yes | Practical where space
available, allows for
increased retention time,
facilitates increased
absorption of both P and
pathogens | Land requirement,
protection against
exposure to pathogens,
substrates and
vegetation harvesting
over time. Electricity
need if pumps used | Installation and
maintenance
costs may be high
depending on
system | Likely | | Sand filter Peat filter | Yes
Yes | Yes
Yes | Practical where adequate space allows | None | Installation and
maintenance costs
may be high | Likely | | Alternative filter media | Yes | Yes | Practical where space
available, and proven
to be safe (no additional
pollutant releases) | Land requirement,
electricity need
if pumps used;
consideration of filter
material disposal | Installation and
maintenance costs
may be high | Possible with further evidence | | Combination systems | Yes | Yes | Practical where adequate space on site allows | Land requirement
higher for site with
mixed treatments;
electricity need if
pumps used | May be high
depending on
system | Possible for sites in sensitive areas | | Package treatment plants | Yes | Possible | May allow for treatment
where limited space
available onsite | Similar to septic tanks, requires electricity | Range of costs,
can be cheaper
than septic tanks
to install, but
maintenance costs
may be higher than
septic tanks | Possible | ## Introduction The 2013 WFD classification identified 220 WFD baseline rivers and 71 baseline lochs in Scotland as being impacted by phosphorus in their chemistry and/or ecology. Faecal microbial loads are also recognised as a contributing factor to downgraded protected areas. In particular, pathogen pollution can result in contamination of bathing waters and shellfish waters, increasing the risk of human exposure to pathogens and associated impacts on industries such as shellfish growing. Large numbers of properties in rural Scotland (estimated to be circa 160,000) are not connected to mains sewerage systems and instead rely on OWTS to process their domestic wastewater. These systems, mainly septic tanks, private sewage treatment works, and package treatment plants, are thought to contribute to the phosphorus and faecal microbial loads that impact on the status of WFD waterbodies and protected areas. ## Research Undertaken The project, in seeking to identify measures to improve OWTS discharges, considered: - 1. The available measures for reducing phosphorus and faecal microbial loads from septic tanks and other OWTS. - An assessment of the feasibility of applying such measures to domestic households or larger private/ communal septic tanks, and the practicality of retrofitting any additional treatment. - Measures to deliver sustainable waste management solutions including energy generation and/or nutrient recovery that may reduce pressures on waterbodies and, at the same time, deliver value. - 4. The load reductions which could potentially and realistically be achieved through each measure, individually and collectively. Authors: Juliette O'Keeffe and Joseph Akunna, Abertay University; Justyna Olszewska, Alannah Bruce and Linda May, Centre for Ecology and Hydrology; Richard Allan, CREW