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Executive Summary

BACKGROUND

Phosphorus (P) source apportionment is an important 
tool for prioritising mitigation strategies and assessing 
compliance as part of River Basin Management Planning1 
process within the EU Water Framework Directive. 
However, the methodology for P source apportionment 
in rivers is subject to significant errors and uncertainty 
as annual total P loads are assumed to correlate with 
ecological impact, despite a wealth of evidence to 
demonstrate other factors such as seasonality and P 
bioavailability that affect the processes and mechanisms 
responsible for the transport of P from source to river 
systems (Stutter et al., 2014). 

In 2014 CREW delivered a descriptive methodology2 
of how modelled Total Phosphorus (TP) loads could be 
modified to take account of their impact on ecology 
(Phase 1). In the absence of measured bioavailable P 
concentrations (by the Scottish Environment Protection 
Agency), the study examined indirect evidence that 
Soluble Reactive Phosphorus (SRP) loads from different 
sources had a different impact on the ecological response 
due to differences in bioavailability of P fractions and 
timing of inputs. These relationships were examined and 
tested (Appendix 1) within the context of other pollutants 
and in catchments with different characteristics.

This project (Phase 2), therefore aims to: (i) evaluate 
the relevance of the method developed in Phase 1 for 
the SAGIS tool to derive ‘ecologically significant source 
apportionment’ and (ii) examine potential factors affecting 
ecological status based on the regulatory data.

RESEARCH QUESTIONS (PHASE 2)

• What is the relative importance of different 
phosphorus (P) fractions and sources on diatom 
response?

• How important is P in affecting diatom status in 
the context of multiple stressors (nutrients, land 
cover and catchment hydrological characteristics) 
in running waters?

• How do factors influencing the phosphorus-
diatom relationship vary between different 
catchments?

In this study, we use the term ‘stressor’ to mean an 
environmental factor that has an adverse impact on the 
ecological community.

MAIN FINDINGS

Data from 45 Scottish streams were examined to identify 
a relationship between diatom response (a key ecological 
indicator for water body status) and other factors 
including: nutrients, SRP loads from different sources, 

1 https://www.sepa.org.uk/environment/water/river-basin-management-planning/
2 https://www.crew.ac.uk/publication/ecological-significance-phosphorus

land cover proportions and hydrological catchment 
characteristics.

• The Trophic Diatom Index (TDI) was used to 
represent the ecological response.  TDI allows 
a comparison of the observed state of a water 
body against that expected in the absence of 
anthropogenic disturbance by deriving the 
Ecological Quality Ratio (EQR TDI) between the 
observed and expected diatom status. Higher 
values indicate higher ecological status.  

• In agreement with previous work, diatom 
response was negatively associated with P 
species (SRP and TP), nitrate (NO3-N) and 
urban land cover and positively associated with 
seminatural land cover type.  The relationship 
varied with season, with higher ecological status 
associated with spring.

1) What is the relative importance of different P 
fractions and sources on the diatom response?

• Total phosphorus concentration was more 
strongly associated with the diatom response 
EQR TDI than SRP, although the differences 
between them were small.  

•  A negative association was observed between 
P concentrations (mg L-1) and diatoms, but this 
study did not find evidence of a relationship 
between P loads and diatoms in running waters

2) How important is P in affecting diatom status in 
the context of multiple stressors (nutrients, land cover 
and catchment hydrological characteristics) in running 
waters?

• Semi-natural land cover had the strongest 
positive association with EQR TDI, while urban 
land cover had a significant negative association 
with the ecological response.  

• After excluding the overarching impact of land 
cover, the ratio of NH3-N to NO3-N as well as 
NO3

- N concentrations also had a negative effect 
on the EQR TDI.

3) How do factors influencing the phosphorus-diatom 
relationship vary between different catchments? 

• The analysis highlighted catchment-specific 
responses, whereby catchments could be 
grouped according to most strongly associated 
stressors.

• The relationship between TP, SRP and EQR TDI 
was not spatially consistent and varied more 
between catchments for TP than for SRP.

Factoring Ecological Significance of
Sources into Phosphorus Source 
Apportionment: Phase 2 
Understanding the link between 
phosphorus and ecological impact 
in Scottish streams
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RECOMMENDATIONS 

• The complex relationship between multiple 
stressors (P and N species, land cover 
proportions) and ecological response between 
catchments, supports the need for further 
research into factors that may affect the spatial 
variability in the stressor-response relationship. 
This could be informed by further collection 
of data with high temporal resolution in 
representative catchment types.

• Effective mitigation measures should target 
all stressors in concert, taking into account 
catchment-specific responses in different 
catchment types.

• In future research, the bio-available P (BAP) 
fraction should be measured and monitored 
alongside SRP and TP at a number of 
representative locations across Scotland to 
provide data for model development and 
validation.

• Reflecting the overriding importance of land 
cover highlighted in this study, it has been 
suggested that current mitigation policies may 
not be sufficient to achieve good ecological 
status and that targeted land cover change may 
need to be considered.
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1  Introduction
Phosphorus (P) pollution remains an important cause of 
eutrophication of freshwaters worldwide (Withers et al., 
2014).  In the UK, significant effort has been made to 
control the anthropogenic input of excess nutrients to 
freshwater bodies from a variety of sources. However, 
despite observable reductions in nutrient concentrations 
leading to an improvement in the chemical status of inland 
waters, in many cases a corresponding improvement in 
the ecological status has not yet been observed (Bowes 
et al., 2012; Harris & Heathwaite, 2012).  This may be 
due to incomplete understanding of these systems (Harris 
& Heathwaite, 2012), the difficulties in measuring and 
quantifying interactions between multiple stressors in river 
catchments (Friberg, 2010) as well as potential lag effects 
(Hamilton, 2012).

Phosphorus source apportionment is an important tool 
for prioritising mitigation strategies under River Basin 
Management Planning within the EU Water Framework 
Directive (Council of the European Communities, 2000).  
However, not all P sources are considered ‘equal’ in terms 
of their bioavailability and ecological impact (Stutter et 
al., 2014). While prioritising mitigation actions according 
to the load of P from different sources may be more 
relevant to standing water bodies where P accumulates in 
sediments over time, mean P concentrations are likely to 
be more relevant in running waters (Stamm et al., 2014).  
In both cases however, it is important to consider the likely 
differing characteristics of contributing sources in terms of 
their actual P bioavailability and therefore their ability to 
affect ecological outcomes. 

Analytically, TP can be split into different fractions 
(Haygarth & Sharpley, 2000), which include particulate 
P (PP) represented by the solid fraction (> 0.45µm).  The 
soluble (< 0.45µm) fraction (Total Dissolved Phosphorus, 
TDP) includes both inorganic forms of P (SRP), and 
soluble organic P usually considered as unreactive (Soluble 
Unreactive Phosphorus, SUP).  Traditionally, SRP has been 
taken as largely composed of orthophosphate (PO4

-) and 
is considered completely bio-available (Prestigiacomo et 
al., 2016). While SRP is typically used in the setting of 
water quality standards, it may not be a perfect proxy for 
bio-available P (BAP) as the bioavailability of individual 
compounds included in SRP varies with their precise 
molecular form (Li & Brett, 2013). Therefore, there is 
a risk that equating SRP with bioavailable P will under-
estimate the total bioavailable P as other P fractions, 
such as PP attached to sediment particles and SUP, can 
both contribute to the pool of bioavailable P (Baker et 
al., 2014) (Fig. 1). Thus, both forms of P (TP and SRP), 
typically quantified in regulatory water quality monitoring 
schemes, may either over- or under-estimate the actual 
amount of bioavailable P from different sources (Ellison & 
Brett, 2006; Ekholm et al., 2009).

SRP
PP TDP

SUP
BAP

TP

Fig 1. Pools of phosphorus (P): TP = Total P, PP = Particulate P, 
TDP = total dissolved P, SRP = Soluble reactive P, SUP = soluble 
unreactive P, BAP = biologically available P.

The bioavailability of different P fractions is usually 
measured through algal bioassays in laboratory 
settings (Ellison & Brett, 2006; McDowell et al., 2016; 
Prestigiacomo et al., 2016).  As such determinations are 
not straightforward in field settings. To our knowledge, 
studies of the relative bioavailability of P forms from 
different contributing sources are limited.  For example, 
Ekholm & Krogerus (2003) found that depending on 
the source, between 16 and 89 % of TP and 4.5 and 46 
% of PP can be bioavailable. Furthermore, P removal 
technologies alter the bioavailability of P fractions from 
sewage treatment works (STWs) (Li & Brett, 2015).  While 
P stripping in sewage treatment works can reduce the 
bioavailable fraction to 1% of particulate phosphorus (PP), 
the bioavailable fractions of soluble unreactive (SUP) and 
soluble reactive (SRP) phosphorus remain high at 72 and 
93% respectively (Prestigiacomo et al., 2016).

Moreover, the bioavailability of P forms from catchments 
dominated by different land uses has been shown to 
vary. This is between 12-73 % for TP (Ellison and Brett, 
2006) and 6-81% for PP (Ellison & Brett, 2006; Egemose 
& Jensen, 2009; Poirier et al., 2012; Baker et al., 2014), 
with evidence that some land cover, such as agriculture 
and urban areas, make TP more bioavailable (Ellison & 
Brett, 2006; Prestigiacomo et al., 2016).  In addition, 
the proportion of bioavailable P in different P fractions 
varies temporally, both between seasons (Stutter et al., 
2007; Abell & Hamilton, 2013) and during storm events 
(Ellison & Brett, 2006). This makes it difficult to estimate 
bioavailable P from other ‘proxy’ P fractions without 
location-specific high-resolution measurements.

The timing of P inputs from different sources is relevant 
for their relative ecological impact. This is particularly 
apparent in running waters where P inputs from near-
continuous sources such as STWs may be more important 
during the ecologically active summer season than 
intermittent inputs linked to hydrologically responsive 
diffuse agricultural sources (Stamm et al., 2014; Shore 
et al., 2017).  Consequently, septic tanks are likely to 
have an intermediate effect on the scale of likely impacts 
as they act as semi-continuous P sources that are also 
responsive to high flow events throughout the year 
(Stutter et al., 2014). In addition, ST effects may be 
greater in the summer, when the flows are low and river 
temperatures are higher, thus having a greater potential 
impact on river ecology. Thus, temporal variability in P 
input from different sources, as well as the spatial and 
temporal variability in their bioavailable P composition, 
need to be considered when prioritising effective pollution 
mitigation actions (Withers et al., 2014).

Diatoms are used in environmental assessments of water 
bodies around the world (Kelly et al., 2012; Kelly, 2013; 
Stevenson, 2014; Poikane, Kelly & Cantonati, 2016) as 
they are strongly correlated to eutrophication gradients 
(Hering et al., 2006).  In the UK, diatoms are one of 
the ecological indicators used to assess ecological status 
under the EU Water Framework Directive (Kelly et al., 
2008; UKTAG, 2014).  The Trophic Diatom Index (TDI) 
allows comparison of the observed state of a water body 
against that expected in the absence of anthropogenic 
disturbance by deriving the Ecological Quality Ratio (EQR 
TDI) between the observed and expected diatom status 
(Kelly et al., 2008), with higher values indicating higher 
ecological status.  TDI was shown to be correlated with 



4

both SRP and NO3--N (Kelly et al., 2008), however the 
relationship between TDI and bioavailable P has not yet 
been tested due to the absence of measured bioavailable 
P concentrations in UK rivers. In this study, we examine 
the link between diatoms as indicators of ecological status 
in Scottish rivers and concentrations of routinely measured 
P fractions (TP and SRP) as proxies for bioavailable P. 
Specifically, we address the following questions: 1) What 
is the relative importance of different P fractions and 
sources on the diatom response? 2) How important is P in 
affecting diatom status in the context of multiple stressors 
in running waters? 3) How do factors influencing the 
phosphorus-diatom relationship vary between different 
catchments?

2  Sites and Statistical 
Analysis
2.1 Sites
Ecological monitoring data was provided by the Scottish 
Environment Protection Agency (SEPA) for 88 locations 
across Scotland where continuous diatom sampling has 
taken place in spring and autumn between January 2007 
and September 2017 (Appendix 2).  The data comprised 
observed and calculated Trophic Diatom Index (TDI) and 
their Environmental Quality Ratio TDI (EQR TDI) (Kelly et 
al., 2008; UKTAG, 2014) for spring and autumn sampling. 

The ecology data was matched with monthly water 
quality data from the Scottish Environment Agency 
(SEPA) operational Harmonised Monitoring Scheme 
(HMS) at the nearest sampling location. From this data, 
diatom and chemistry monitoring locations within 200 
m distance were selected for analysis, resulting in 625 
complete observations from 45 study catchments with 
diverse characteristics (Fig. 2, see Appendix 2 for full 
list of data used in the analysis). Chemical parameters 
of interest included TP, SRP, NO3-N, nitrite (NO2-N), 
ammonia (NH3-N), suspended solids (SS) and chloride 
(Cl).  TP was derived as a reduced phosphomolybdenum 
blue complex from a manual sulphuric acid - persulphate 
digest of unfiltered samples, while SRP represented the 
molybdate-reactive P determined from a <0.45 µm filtered 
sample. Alkalinity was not included in the analysis as it is 
accounted for in the calculation of the TDI index (UKTAG, 
2014).

Fig. 2.  Location of 45 catchments included in the study.

Observed mean daily river discharge data was obtained 
from SEPA for the selected 45 locations.  For each 
location, the upstream contributing area was delineated 
using the ArcHydro tools in ArcGIS 10.2.1 and a 10m or 
50m resolution DEM.  Delineated catchment outlines were 
visually sense-checked to eliminate any misalignments 
due to errors in DEM and the best-fitting outline was 
selected.  Proportion of arable, improved grassland, urban, 
woodland and semi-natural land cover types (the latter 
including all types of unimproved grassland and dwarf 
shrub heath) were calculated for each catchment area in 
ArcGIS 10.2.1 based on the CEH Land Cover Map 2007 
(Morton et al., 2011).

Hydrological characteristics of each study catchment 
were derived to describe hydrological flashiness (ratio 
of high to low flows Q5:Q95), seasonality (range of 
Parde coefficients) and oscillation (Richards-Baker Index 
(RBI)), using dimensionless indices describing variability 
of streamflow (see Appendix 1).  All hydrological indices 
were calculated based on daily observed or simulated 
streamflow (based on the CEH Low Flows model) for the 
time period 2007-2016.

Modelled phosphorus source apportionment load 
estimates (kg yr-1) from sewage treatment works 
(SWLOAD), septic tanks (STLOAD), combined storm 
overflows (CSOLOAD), urban (URLOAD), livestock 
(LSLOAD) and arable (ARLOAD) land cover types were 
obtained from SEPA as the output from the SAGIS source 
apportionment tool (Daldorph, 2017).
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2.2 Statistical analysis
A stepwise ‘weight of evidence’ based approach, based 
on a range of different statistical modelling approaches 
and model structures, was chosen to maximise the 
insights that can be gained from regulatory water quality 
monitoring data.  Each class of statistical models was 
used to get a different insight into the data structure and 
functional relationships as outlined below.

Principal Component Analysis was used to investigate 
the presence of main environmental gradients and 
correlations in the multivariate dataset. PCA simplifies the 
data structure by converting correlated variables (potential 
stressors) to a smaller number of uncorrelated axes or 
‘components’ (Fig.3).  

Further formal statistical modelling was undertaken using 
three different modelling approaches – regression trees 
for clustered data (RT), compositional linear mixed models 
(CLMM) and ordinary linear mixed models (LMM).  For 
the LMM, either compositional or ordinary, we considered 
two alternative scenarios: (A) one with all variables, 
including land cover type distribution, and (B) another 
with all variables excluding land cover type distribution.

Regression trees (RT) were used to classify catchments 
into groups according to stressor-response relationships. 
This allowed to understand potential differences in 
relevant stressors of diatom response between different 
catchment types.  The target variable (EQR TDI) was 
predicted from observations of catchment characteristics 
(water quality data, hydrology and land cover type).  The 
predicted EQR TDI values (represented by the ‘leaves’) 
appear as the endpoints of the RT, while the ‘tree 
branches’ are split along breakpoints in the influential 
input variables.  If a condition is satisfied, the classification 
path follows to the left and if a condition is not satisfied, 
the path follows to the right (Fig. 4).

Compositional Linear Mixed Models (CLMM) were used 
to understand the influence of the relative proportions 
of water chemistry components and land cover types on 
the observed diatom response.  These relative amounts 
represent parts of a whole (as demonstrated by their 
units (mg/L and percentage land cover respectively) and 
imply that each part (i.e. a chemical) is not free to vary 
independently of the other measured parts (i.e. other 
chemicals).  Thus, instead of taking the original absolute 
values of individual variables separately, the compositional 
data analysis method (CoDA, see e.g. Aitchison, 1986; 
Pawlowsky-Glahn, Egozcue, & Tolosana-Delgado, 2015) 
examined the relative influence of individual chemical 
and land cover variables in relation to the other chemical 
variables and land cover proportions.  (See Fig. 5 for 
example output and Appendix 3 for further details).

Linear Mixed Models (LMM) (Zuur et al., 2009) were 
used to statistically investigate the relationship between 
the absolute values of the predictor variables and the 
ecological response and to understand the relationships 
both at the level of individual catchments as well as 
deriving an overall response that could be generalised to 
unmeasured locations (Fig. 6).

3  Results
3.1 Principal Component Analysis
To address questions 1 and 2, Principal Component 
Analysis (PCA) was used as a first step in the process 
of disentangling the association between nutrient 
concentrations, SRP loads, hydrological variables, land 
cover types, and the ecological response. It allowed 
the identification of environmental gradients across the 
study catchments and to simplify the multivariate data 
set. In this analysis, a number of correlated variables 
are transformed into a smaller number of uncorrelated 
variables called principal components, which can then 
be interpreted as representing different environmental 
gradients (e.g. ecological quality, pollution stressor 
gradient). The first five principal components (eigenvalues 
> 1) accounted for 79.71% of the total variance in the 
data (Table 1). All chemical parameters were associated 
with PC1, which accounted for 33.89% of variation. 
Arable, improved grassland and urban land cover 
types as well as P loads from all sources were positively 
associated with PC1, while semi-natural land cover was 
negatively associated with PC1. Thus, PC1 represented 
a land cover and hydro-chemical gradient, with sites 
in good ecological status related more closely (but 
not exclusively) to a higher proportion of semi-natural 
land cover, while sites in poor ecological status related 
more closely (but not exclusively) to higher chemical 
concentrations and P loads from all sources (Fig 3).  
Concentrations were more strongly positively associated 
with PC1 than nutrient loads, especially TP which was 
more strongly associated with this environmental gradient 
than SRP or N. Conversely, semi-natural land cover type 
and Richards Baker Index (RBI, representing hydrological 
flashiness) were strongly negatively associated with PC1.

P loads from all sources other than arable were strongly 
positively associated with PC2.  PC3 represented a 
gradient of differentiated hydrological response, with 
RBI and Q5:Q95 associated positively and baseflow index 
(BFI) associated negatively with this axis. (Table 1).

Thus, PCA analysis indicated that pollutant 
concentrations, pollutant loads, and hydrological 
characteristics are likely to have different associations 
with the ecological response. However, PCA does not 
allow to conclusively understand which of these predictors 
(e.g. which nutrient concentrations), or their ratios, are 
more influential. To this end, we conducted further formal 
statistical modelling as outlined below.
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Table 1 Loadings (indicating the strength of relationship) and total variance explained by PCA axes 1 to 3.  For clarity, only loadings >0.3 
are shown.  The most important variables with loadings >0.7 used in the interpretation of axes are marked in bold.

PC1 PC2 PC3

z.logTP 0.834

z.logSRP 0.771

z.logAmmonia 0.714

z.logCl 0.670 -0.369

z.logNitrate 0.743 -0.414

z.logNitrite 0.763

z.logSS 0.581

z.arable 0.561 -0.515

z.improved.grassland 0.656 -0.326

z.urban 0.536

z.seminatural -0.775 0.488

z.woodland

z.SWLOAD 0.550 0.805

z.CSOLOAD 0.554 0.807

z.LSLOAD 0.467 0.850

z.ARLOAD 0.538 0.318 -0.338

z.URLOAD 0.557 0.801

z.STLOAD 0.606 0.737

z.RBI -0.300 0.314 0.776

z.Parde_Range 0.452

z.BFI 0.320 -0.481 -0.768

z.q5.q95.ratio 0.539 0.660

Cumulative variance 33.89% 56.58% 67.70%

 
Fig. 3 PCA plots showing a) variable distribution according to PCA loadings and b) sampling-site PCA scores (the outliers representing 
extreme SRP loads from Clyde estuary).  Site points were coloured according to ecological status.

3.2 Regression Tree Analysis
Regression tree analysis identified the presence and 
the hierarchy of importance of multiple stressors in the 
dataset and was relevant to all three research questions.  
This indicated a strong negative relationship between 
TP and diatom response (Fig. 4).   Low EQR TDI ratios 
(average EQR TDI equal to 0.58) were associated with 
TP concentrations > 0.035 mg L-1 and urban land cover 

> 5% (called group A).  EQR TDI values of about 0.67 
on average can be expected in catchments where TP 
concentrations are > 0.035 mg L-1 and arable land cover 
exceeds 27% (group B) whereas EQR TDI values of 
around 0.76 can be expected where arable land cover is 
<27% (group C).  In catchments with TP concentrations 
below 0.035 mg L-1 and more than 12% woodland cover, 
the average expected EQR TDI value was 0.74 (group 
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D).  The highest EQR TDI (average value = 0.82) can be 
expected in catchments with TP concentrations < 0.035 

mg L-1 and woodland cover < 12% (Group E).

Fig. 4 Regression tree from observations of water quality, discharge, land cover and P apportionment loads from 45 catchments. The 
endpoints of the tree (leaves) show average EQR TDI according to splits (tree branches) of the variables at optimal threshold values.  The 
map shows the spatial distribution of the predicted groups.  Note that a subgroup of observations (U) had two possible endpoints.

This analysis indicated that TP concentration was most 
strongly associated with the diatom response, along with 
urban, arable and woodland land cover types and that 
these relationships varied between catchments.

3.3 Compositional Linear Mixed 
Model Analysis
Compositional analysis was undertaken to understand 
which pollutant and land cover ratios were most 
influential on the diatom response.  These data were 
firstly explored using compositional PCA biplots (Aitchison 
& Greenacre, 2002) which represent their relative variation 
structure (Fig. 5).  Whilst NO3-N concentrations were 
the least associated to the other chemical parameters; 
NH3-N and NO2

--N concentrations, as well as TP and SRP 
concentrations, were strongly associated with each other 
(indicated by the proximity of the corresponding vectors) 
(see Fig 5. and Appendix 3 for related groupings).  CLMM 
considering all predictors (scenario A) showed that the 

diatom response was negatively related to the balance 
TP+SRP vs. NH3+NO2

-+Cl-+SS (represented by term b2; 
Table 2; Appendix 3) as well as to b6 – the balance of 
NH3-N to NO2

--N (term b6; Table 2; Appendix 3) and 
positively associated to the land cover balance l1 related 
to the log-ratio of semi-natural and woodland land cover 
types to arable, grassland and urban land cover types 
(Table 2; Appendix 3).  When land cover was excluded 
from the analysis (scenario B), balances b2 and b6 were 
negatively associated with the diatom response (Table 2; 
Appendix 3).

These results suggest that the combined ratio of TP and 
SRP to other nutrients (balance b2) and the trade-off 
between NH3-N to NO2

—N (balance b6) were the main 
chemical stressors negatively influencing EQR TDI.  
While P species are significantly negatively linked to 
ecological status, the anoxic conditions indicated by the 
NH3-N to NO2

—N balance, likely indicative of point-source 
pollution, including domestic discharges, have an equally 
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important negative relationship with EQR TDI that is 
ameliorated by the presence of seminatural habitats 

(balance l1). Therefore, these combined relationships 
should be considered when setting mitigation targets.

Fig. 5 Compositional biplots of chemistry concentrations (a) and land cover distributions at sampling-site level (b).  Closeness of variable 
rays is directly related to proportionality relationships between variables.

3.4 Linear Mixed Model Analysis
Finally, ordinary LMM were used to characterise the 
relationship between EQR TDI and absolute chemical 
concentrations, SRP loads, land cover and hydrological 
indices in individual catchments, as well as an overall 
relationship across all catchments.

Averaged top five LMM in Scenario A showed that SRP, 
TP and urban land cover were negatively related to the 
diatom response (Table 3).  However, as SRP and TP were 
highly correlated, the top five models were also examined 
separately.  These included (nature of relationship between 
the predictor variable and EQR TDI in brackets): 

a) SRP (-), semi-natural (+) and urban land cover (-) (R2 = 0.62)

b) SRP (-), season (spring +) and semi-natural land cover (+) (R2 = 0.61)

c) TP (-), semi-natural (+) and urban land cover (-) (R2 = 0.65)

d) TP (-), season (spring +) and semi-natural land cover (+) (R2 = 0.64)

e) Season (spring +), seminatural (+) and urban land cover (-) (R2 = 
0.64)

The models accounted for a similar amount of variability 
in EQR TDI (R2 = 0.61-0.65) with model c) accounting 

for the highest amount of variability. SRP, TP and urban 
land cover had negative association with EQR TDI while 
semi-natural land cover had a positive association.  In all 
models, semi-natural land cover had the greatest effect-
size (i.e. influence) on the diatom response, as indicated 
by the standardised model coefficients.  The relationship 
between TP and EQR TDI was more variable between 
catchments and thus influenced by site-specific factors 
than the relationship between SRP and EQR TDI (see 
graph of variable slopes in Fig. 6).

The combined evidence from all modelling approaches 
showed that TP was potentially more closely negatively 
associated with EQR TDI than SRP. However, the negative 
association of NO3-N alongside P was also apparent, 
while semi-natural habitat had an overriding strong 
positive association.

 

Table 2 Estimates from averaged top compositional linear mixed models in two scenarios: (A) chemistry concentrations, SRP loads, land 
cover proportions, hydrological indices and season as predictors (R2 = 0.61); (B) chemistry concentrations, SRP loads, hydrological indices 
and season as predictors (R2 = 0.62).

(A) Estimate Std. Error P

Intercept 0.65 0.04 < 0.001

balance b2 (TP & SRP vs. Cl, SS, ammonia and nitrite) -0.024 0.01 <0.05

balance b6 (ammonia vs. nitrite) -0.040 0.02 <0.05

balance l1 (semi-natural & woodland vs. other) 0.042 0.01 <0.001

(B)

Intercept 0.90 0.47 n.s.

balance b2 (TP & SRP vs. Cl,  SS, ammonia and nitrite) -0.032 0.01 <0.01

b6 (ammonia vs. nitrite) -0.039 0.017 <0.05
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Fig. 6 LMM random slopes for a) SRP and b) TP showing greater variability in the stressor-response relationship between TP and EQR 
TDI than between SRP and EQR TDI in studied catchments.  The slopes for TP indicate potentially stronger but variable control of TP on 
the ecological status, affected by site-specific catchment characteristics, whereas the response to SRP was more homogenous between 
locations and less affected by site-specific effects.

Table 3 Averaged top linear mixed models in two scenarios (A) chemistry concentrations, SRP loads, land cover proportions, hydrological 
indices and season as predictors (R2 = 0.61); (B) chemistry concentrations, SRP loads, hydrological indices and season as predictors (R2 = 
0.60).

(A) Estimate Std. Error P

Intercept 0.79    0.02  < 0.001

z.logSRP -0.021    0.02 n.s.    

z.logTP -0.021    0.02 n.s.    

z.seminatural 0.091    0.02  <0.001

z.urban -0.049    0.02  <0.05  

SeasonSpring 0.027    0.01 <0.05  

(B)

Intercept 0.79    0.02  <0.001

z.logTP -0.05    0.02 <0.01  

z.logNitrate -0.055    0.02 <0.001

SeasonSpring 0.029 0.01 <0.05

4  Discussion
This study examined a) the relationship between diatoms 
as indicators of ecological status in Scottish rivers and 
routinely measured P fractions (TP and SRP) and b) 
evidence on whether P loads from different sources have 
a differentiated impact on the ecological response, due to 
potential differences in bio-availability of P fractions and 
timing of inputs. Specifically, we addressed the following 
research questions:

4.1 What is the relative importance 
of different P fractions and sources on 
the diatom response?
In this study, the combined evidence from different 
modelling approaches has shown that TP is more 

strongly associated with EQR TDI than SRP.  This may 
be because TP accounts for additional P fractions such 
as particulate P attached to sediment particles as well as 
soluble P and unreactive P (see Glendell et al., 2019). In 
addition, TP may be associated with other fine sediment-
bound contaminants. However, the combined role of SRP 
and TP apparent from compositional analysis (Section 
3.3) indicates that neither fractions fully accounts for 
bioavailable P and is therefore likely to be associated 
with either an over- or under- estimation of the biological 
impacts (Li and Brett, 2015). To provide a more definitive 
conclusion with regards to BAP, we recommend that in 
future research, the BAP fraction should be measured 
and monitored alongside SRP and TP at a number of 
representative locations across Scotland to provide data 
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for model development and validation.

Formal modelling in the present study did not find a 
statistically significant link between modelled loads of 
SRP from different sources and the ecological response 
in running waters.  While this study supports the finding 
that in running waters, loads are indeed less relevant to 
ecological status than nutrient concentrations (Stamm 
et al., 2014), the modelled loads used in this study are 
subject to poorly quantified uncertainties in both the 
model and the data.  Therefore, where possible, future 
work should focus on examining these relationships in 
catchments with high-resolution monitoring data where 
uncertainties associated with load estimation can be 
quantified (Johnes, 2007; Defew, May, & Heal, 2013; 
Cassidy et al., 2018)daily paired instantaneous P and flow 
data for 17 UK research catchments covering a total of 39 
water years (WY. 

4.2 How important is P in affecting 
diatom status in the context of multiple 
stressors in running waters? 
Compositional analysis was undertaken to understand 
which trade-offs between pollutants and other stressors 
were most significantly associated with EQR TDI.  We 
concluded that the combined ratio of TP and SRP to other 
chemicals, rather than the two P species separately, was 
the main chemical predictor of EQR TDI in models that 
included land cover (Section 3.3).  In models that did 
not include land cover, the ratio of NH3-N to NO2

--N was 
found to be statistically more significant (Table 2).  NH3-N 
has been shown to be indicative of domestic effluent 
from septic tanks (Richards et al., 2016), suggesting 
that these P sources may be particularly important for 
ecological status.  However, this study suggests that land 
cover has an overriding association with the stressor-
response relationship and that the weaker signal from 
the NH3 to NO2 ratio can only be detected when this 
overriding association is removed from the model.

Linear mixed models with chemistry, source 
apportionment and land cover type identified TP and 
SRP as the only statistically significant chemical variables 
associated with the diatom status, alongside semi-natural 
and urban land cover. These models accounted for up to 
65% of the variability in EQR TDI. However, semi-natural 
land cover type had a stronger (positive) association with 
EQR TDI than either TP or SRP, based on the comparison 
of standardized regression coefficients (Table 3). Thus, 
combined evidence from different modelling approaches 
shows that land cover type had an overriding association 
with EQR TDI, probably acting as a proxy for a number 
of possible mechanisms and processes, such as different 
bioavailability of P fractions, river morphology, riparian 
and/or aquatic habitat structure and toxic contaminants 
(see also Glendell et al., 2019).  Significantly for the 
objectives of this study, land cover can act as a proxy for 
varying bioavailability of P fractions, which have been 
shown to differ between catchments dominated by 
different land cover types (Ellison and Brett, 2006; Stutter 
& Lumsdon, 2008; Egemose & Jensen, 2009).

In models without land cover, nitrate was the most 
strongly associated with EQR TDI, alongside TP (Table 
3).  The importance of nitrate in this model indicates an 
additive stressor response relationship between TP and 

nitrate.  Both N and P can enhance the rates of primary 
production and lead to impairment of water quality 
(Stevenson, 2014; Wagenhoff, et al., 2017; Wagenhoff 
et al. 2017; Paerl et al., 2016; Crnkovic, et al., 2018; 
Jarvie et al., 2018).  EQR TDI was also found to be related 
to both SRP and NO3-N when the index was designed 
(Kelly et al., 2008).  The twin stressor from both N and 
P may be particularly important in upland low alkalinity 
rivers that are naturally both N and P limited and where 
targeting of both nutrients may be necessary to achieve 
good ecological status (Jarvie et al., 2018).  In contrast, in 
lowland high alkalinity headwater streams, which are also 
likely to be more densely populated and receive greater P 
loads from more bioavailable point sources such as sewage 
treatment works and septic tanks (Ekholm and Krogerus, 
2003; Ekholm et al., 2009; Richards et al., 2016; Stutter, 
Graeber, Evans, Wade & Withers, 2018), reducing P 
concentrations may be the most effective mitigation 
strategy (Jarvie et al., 2018).  Thus, we suggest, that 
targeting of all stressors in a concerted way would be the 
most meaningful mitigation strategy.

4.3 How do factors influencing the 
phosphorus-diatom relationship vary 
between different catchments?
Catchment-specific regression coefficients derived 
from the mixed models show a greater variability in the 
relationship between EQR TDI and TP than between EQR 
TDI and SRP (Fig. 6).  These findings point towards a 
differentiated relationship between TP, SRP and diatom 
status in different catchment types and may be related to 
complex interactions and factors such as river morphology 
and habitat condition as well as different bioavailability of 
P fractions in catchments with different characteristics.  

Regression tree analysis also pointed towards 
the importance of both chemistry and catchment 
characteristics in predicting ecological status, with 
relevant breakpoints for both P concentrations and 
urban/arable land cover.  This approach identified the 
total P concentration of 0.035 mg L-1 as the primary 
breakpoint in the data set, distinguishing between 
catchments in good and mixed ecological status (Fig. 
3).  This breakpoint appears plausible, as it lies within the 
range of previously reported limiting P concentrations 
in British streams between 0.01-0.05 mg L-1 (Jarvie et 
al., 2018) and coincides with a threshold of 0.03 mg L-1 
at which significant change in diatom assemblage was 
observed (Bowes et al., 2012).  This analysis also indicated 
that urban land cover (>5%) and arable land cover (> 
27%) had a detrimental effect on the ecological response, 
with the lowest EQR TDI scores likely to be expected in 
catchments with a higher proportion of urban land cover.  
This may be linked to higher P loads from point sources 
such as STWs and septic tanks, and their likely higher bio-
availability (Jarvie et al., 2010).  Particulate P from urban 
catchments during base-flow conditions has been found 
to be more bio-available than in catchments dominated 
by other land cover types (Ellison and Brett, 2006) and is 
therefore likely to have significant impact on river ecology 
(Shore et al., 2017).  Conversely, PCA, compositional and 
ordinary mixed models all showed the positive associations 
of semi-natural land cover with river ecology.

Interestingly, hydrological catchment characteristics 
likely to be linked to the timing of nutrient inputs such 
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as seasonality and flashiness were only marginally 
associated with EQR TDI.  Only the compositional linear 
mixed models (Section 3.3) that did not include land cover 
as suggested a weak association between the hydrological 
variability indices BFI, RBI and EQR TDI.  However, 
season was a significantly associated with EQR TDI in 
both compositional and ordinary linear mixed models 
with a higher EQR TDI score expected in spring, which is 
consistent with the findings of the index authors (Kelly et 
al., 2008).

These findings suggest that mitigation strategies should 
target P impacts alongside multiple chemical and land 
use stressors, tailored to catchment-specific responses 
(Glendell et al., 2019).

5  Conclusions and 
recommendations
This study applied a suite of statistical modelling 
approaches to regulatory water quality monitoring data 
to examine the association between routinely measured 
P fractions (TP and SRP) as proxies for bioavailable P 
and the ecological response.  The stepwise ‘weight of 
evidence’ approach has shown that TP may potentially 
be more strongly associated with EQR TDI, although the 
differences with SRP were small and both fractions were 
negatively associated with the ecological response. This 
study did not find evidence of a relationship between P 
loads and diatoms in running waters. Semi-natural land 
cover type had the strongest positive association with EQR 
TDI, while urban land cover type had a strong negative 
association with the ecological response.  The ratio of 
NH3-N to NO3-N as well as NO3-N concentrations also 
had a negative association with the EQR TDI, when the 
overarching impact of land cover was not included among 
modelled variables.

The relationship between TP, SRP and EQR TDI, varied 
spatially, pointing towards different bioavailability of 
these two BAP proxies in catchments with contrasting 
characteristics.  Therefore, future research should test 
this hypothesis against empirical measurements of 
bioavailable P in different catchment types within 
the region of interest, as it can be expected that a 
relationship between bioavailable P and the ecological 
response would result in a statistically closer relationship 
than between either of the routinely measured P 
fractions.  Furthermore, the results of this study support 
the need for further research into factors that affect the 
spatial variability in this stressor-response relationship in 
different catchment types. Furthermore, collecting data 
at a high temporal resolution in representative research 
catchments would also help to inform future modelling 
efforts.

Reflecting the overriding importance of land cover 
highlighted in this study, “it has been suggested that 
current mitigation policies may not be sufficient to 
achieve good ecological status and that targeted land 
cover change may need to be considered. Such landscape 
redesign could include a shift to heterogenous landscape 
mosaics and mixed farming, perhaps as part of climate 
change adaptation.  Thus, future regulatory efforts should 
target P impacts alongside multiple chemical and land 
use stressors, tailored to catchment-specific responses 

(Glendell et al., 2019).”  Advanced statistical modelling 
approaches, such as those used in this study, based on 
reanalysis of the growing body of regulatory data, will 
help to inform catchment-specific targeting of mitigation 
measures.
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7  Appendices
Appendix 1 Statistical Modelling

Data pre-processing and exploration

Data was visually screened for outliers and checked for normality.  Thereafter, all chemistry data was log transformed and 
the EQR TDI data (originally defined in the [0, 1] interval) was arcsin transformed to better accommodate linear mixed 
model (LMM) assumptions.  Note that cases with EQR TDI = 1 (equating to 29 observations) were excluded to achieve 
satisfactory distribution of model residuals.  For consistency and comparability of results between different statistical 
analyses, the same number of complete observations (596 cases) was used in all analyses.  Principal Component Analysis 
(PCA) was used to investigate the presence of environmental gradients in the multivariate data set.  Principal components 
with eigenvalues exceeding 1 were retained.  All continuous variables were z-transformed to homogenise the scales and to 
facilitate comparison of effect sizes between different variables.

The following hydrological indices were calculated to characterise the catchment hydrological response:

• Distribution: The ratio of high to low flows (Q5:Q95 ratio) (Jordan et al. 2005) relates the streamflow which 
is exceeded 5 % of the days to streamflow with an exceedance frequency of 95 %. Streamflow quantiles were 
calculated using the function fdc in the R-package hydroTSM (Zambrano-Bigiarini, 2015).

• Seasonality: The Pardé coefficient (Parde, 1947) relates long term mean monthly streamflow to long term mean 
annual streamflow. To convert the Pardé coefficient into one single value expressing seasonality (rather than twelve 
values, one for each month), Viglione et al. (2013) introduced the range of the Pardé coefficients which is the 
difference between the maximum Pardé coefficient and the minimum Pardé coefficient. 

• Oscillation: The Richards Baker Flashiness Index (RBI) (Baker, Richards, Loftus, & Kramer, 2004) relates the 
difference between the streamflow of the current to the previous day as:

with    being the streamflow of the current day,  being the streamflow of the previous day, and n representing the 
number of observations.

The base flow index (BFI) was derived from streamflow records using the function baseflows implemented in the R-package 
hydrostats (Bond, 2015). 

Statistical modelling

Formal statistical modelling was undertaken using three different modelling approaches – regression trees for clustered data 
(RE-EM algorithm), compositional linear mixed models (CLMM) and ordinary linear mixed models (LMM).  For the LMM, 
either compositional or ordinary, we considered two scenarios of alternative model structures to account for model structural 
uncertainty: (A) one with all water chemistry variables, phosphorus source apportionment, land cover type distribution and 
hydrological variables, and (B) another with just chemistry, phosphorus source apportionment and hydrological variables.

A RT was fitted using the RE-EM algorithm for clustered data (Sela and Simonoff, 2012) as a non-parametric machine 
learning approach to understand potential differences in significant predictors of diatom response between different 
catchment types, with the data clusters defined by the different sites as a random effect (in our case repeated sampling 
occasions nested within 475 sampling sites).

CLMM were used to understand the influence of the relative distribution of water chemistry components and land cover 
types on the observed diatom response.  These variables consist of positive and relative amounts representing parts of a 
whole, so-called composition, as demonstrated by their units (mg/L and percentage land cover respectively).  This implies, 
amongst others, that the analytical results for each part are not fully free to vary independently of the other measured parts.  
Thus, instead of treating the original individual variables separately, compositional data analysis methods (CoDA, see e.g. 
Aitchison, 1986; Pawlowsky-Glahn et al., 2015) focus on the relative information by working with log-ratios between them.  
In this manner, the compositions are mapped onto the real space and the modelling can then be conducted using ordinary 
methods on real log-ratio coordinates (for illustration in the environmental and water science context see e.g. Buccianti 
& Pawlowsky-Glahn, 2005; Otero et al., 2005; Nisi et al., 2008; Reimann et al., 2017).  This type of data transformation 
additionally guarantees that results do not change with changes in the relative units of measurement used (e.g. if data were 
rescaled from mg/L to proportions) or depending on whether we are working with either the full composition or only a 
subset of its parts of interest (a sub-composition). 

A particular type of log-ratio coordinates, also called balances (Pawlowsky-Glahn et al., 2015), which account for the relative 
importance of one subset of parts (in the numerator of the log-ratio) against another (in the denominator of the log-ratio) 
was built.  The elements in each subset were chosen according to the strength of pairwise proportionality relationships.  This 
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was used as input to perform R-mode Ward’s clustering to produce the subsets of most closely linked components going into 
numerator and denominator for each balance (see Appendix 5 for further details).  The CLMMs resulted from using these 
log-ratio balances as predictors in ordinary LMMs along with the other covariates (Palarea-Albaladejo et al., 2017), instead 
of using the original chemical and land cover variables.

LMM (see Zuur et al., 2009) were used to statistically investigate the relationship between predictor variables as fixed effect 
and the ecological response as outcome variable, with site specified as a random effect.  LMMs allowed to investigate the 
functional relationship between predictor variables and the ecological response for clustered data, enabling predictions both 
at the level of individual catchments as well as an overall response.

Selection between alternative mixed models (CLMMs and LMMs) to explain EQR TDI with nested fixed effect structures 
and the same random effect structure was based on the Akaike information criterion (AIC) (maximum likelihood estimation 
was used for this).  The AIC measure ranked predictors according to their relative importance by the sum of Akaike weights 
over all possible models derived from the full model in which a predictor was included (Burnham and Anderson, 2002). 
Moreover, these models were screened for collinearity and only models with correlations between predictors lower than 0.6 
were retained.  Top models with delta AIC (AIC difference) <2 and r<0.6 were selected and then re-fitted using restricted 
maximum likelihood (REML). Model goodness-of-fit was evaluated using the pseudo-R2 coefficient proposed in Nakagawa 
and Schielzeth (2013).

Appendix 2 summarises the data included in the analyses.  Statistical test significance was concluded for p-values below the 
usual 5% significance level in all cases.  Statistical analyses and modelling were undertaken in the R system for statistical 
computing v3.4 (R Core Team, 2018) using the packages FactorMineR, RE-EMtree, lme4, MuMln and compositions.
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Table A2.2 - Phosphorus load apportionment (kg/year) and hydrological indices for the 45 study locations

Phosphorus source apportionment (kg yr-1)

Location STW Septic 
tanks

CSOs arable urban RBI Parde 
Range

BFI q5:q95 
ratio

529 0 0.1 0.19 0.11 0.24 0.404 1.361 0.475 17.321

1466 0.46 0.29 0.14 0.27 0.62 0.244 1.147 0.588 10.174

1515 0.61 0.16 0.41 0.5 0.11 0.407 1.625 0.455 16.319

1518 0.12 0.06 0 0.13 0 0.385 1.465 0.487 15.074

1574 2.34 1.2 0.98 1.95 0.24 0.231 1.506 0.459 19.477

1615 28.62 1.05 10.43 0.95 2.24 0.323 1.46 0.445 21.653

3453 0 0.08 0 0.03 0 0.411 1.182 0.416 26.508

4638 1.18 1.19 0.27 4.35 0 0.271 1.441 0.444 22.401

5982 0 0.41 0 0.76 0.02 0.315 1.379 0.505 18.194

7762 0.48 2.2 2.67 3.73 1.41 0.33 1.293 0.515 13.019

7989 23.08 3.17 1.88 5.45 0.29 0.168 1.735 0.581 14.297

8175 2.73 1.52 1.02 6.16 0.12 0.151 1.485 0.624 10.917

8455 0 0.51 0.1 0.62 0.03 0.353 1.5 0.493 13.451

8517 0 0.51 0.1 0.62 0.03 0.201 1.28 0.623 6.013

8549 0.61 0.56 0.32 0.58 0 0.247 2.025 0.494 13.963

8801 2.81 1.04 3.17 2.93 0.94 0.323 1.398 0.47 19.263

9422 0.24 0.5 0 1.06 0.01 0.379 1.645 0.402 24.607

9457 2.64 2.66 0.33 7.75 0.03 0.335 1.389 0.479 18.693

9750 1.03 0.48 0.19 2.13 0 0.345 1.56 0.465 18.557

10476 0.59 1.36 0.19 1.73 0.02 0.294 1.701 0.521 10.585

17012 0 0.11 0 0.27 0 0.366 1.74 0.454 22.412

122480 950.91 15.67 119.63 9.08 19.13 0.355 1.465 0.433 32.25

122482 0.17 0.87 0.18 0.42 0 0.323 1.481 0.504 14.215

122496 6.03 0.9 2.26 0.33 0.02 0.431 1.572 0.424 22.988

122706 0 0.23 0.45 0.3 0.3 0.541 1.592 0.39 23.906

122709 0 0.21 0.29 0.42 0.09 0.572 1.558 0.376 25.698

123153 0.06 0.53 0.05 0.03 0.05 0.312 1.135 0.427 36.625

200211 0 0.13 0 0.01 0 0.533 1.362 0.374 36.867

204343 0.02 0.7 0 4.45 0.01 0.231 1.303 0.577 12.356

206718 0 0.03 0 0.02 0 0.362 1.251 0.471 17.607

206732 0.27 0.35 0 0.03 0 0.394 1.218 0.497 12.965

206807 0 0.27 0 0.02 0 0.435 1.449 0.425 21.607

206811 0 0.04 0 0.01 0 0.557 1.419 0.372 35.264

206837 0 0.07 0 0.04 0 0.139 1.325 0.494 15.453

206845 0 0.11 0 0.04 0 0.61 1.311 0.33 53.937

207120 1.64 1.09 0.43 2.15 0.04 0.285 0.917 0.557 9.913

207127 0 0.05 0 0.01 0 0.369 0.58 0.514 10.469

207269 1.94 0.73 0.28 0.9 0.03 0.189 1.032 0.615 7.915

207277 0 0.23 0 0.02 0.17 0.16 1.026 0.633 7.222

207298 0 0.02 0 0.01 0 0.306 1.349 0.463 19.245

207309 0 0.03 0 0 0 0.374 1.152 0.51 12.507

207636 1.03 1.54 0.18 0.41 0.05 0.403 0.996 0.48 14.833

232930 0 0.06 0 0.06 0 0.224 0.793 0.608 8.311

300008 0 0.58 0 2 0.21 0.344 1.47 0.452 23.108

300379 0 0.05 0 0.16 0 0.492 1.202 0.452 17.571



19

Table A2.3 - Land cover proportions for the 45 study catchments

Land cover proportion

Location Catchment 
area (km2)

Arable freshwater improved 
grassland

Semi-
natural

urban woodland other

529 10.37 0.27 0.02 0.28 0.07 0.21 0.11 0.05

1466 32.48 0.36 0.01 0.32 0.10 0.06 0.15 0.01

1515 58.51 0.14 0.00 0.48 0.18 0.02 0.17 0.00

1518 8.76 0.10 0.00 0.56 0.18 0.00 0.15 0.00

1574 514.21 0.00 0.05 0.05 0.66 0.00 0.23 0.00

1615 191.63 0.07 0.03 0.29 0.30 0.08 0.23 0.00

3453 30.73 0.00 0.00 0.01 0.84 0.00 0.15 0.00

4638 1028.64 0.08 0.03 0.10 0.52 0.01 0.26 0.00

5982 54.93 0.48 0.00 0.15 0.23 0.01 0.13 0.01

7762 505.17 0.22 0.00 0.13 0.54 0.01 0.11 0.00

7989 125.87 0.45 0.00 0.27 0.11 0.11 0.05 0.00

8175 318.16 0.43 0.01 0.34 0.10 0.02 0.11 0.00

8455 222.11 0.12 0.00 0.17 0.59 0.01 0.10 0.00

8517 104.85 0.08 0.04 0.20 0.57 0.00 0.11 0.00

8549 247.01 0.52 0.00 0.23 0.13 0.03 0.09 0.00

8801 463.28 0.01 0.03 0.12 0.71 0.00 0.12 0.00

9422 120.01 0.56 0.00 0.18 0.12 0.01 0.13 0.01

9457 530.47 0.31 0.00 0.12 0.44 0.00 0.11 0.01

9750 175.14 0.24 0.01 0.16 0.36 0.00 0.23 0.00

10476 60.01 0.57 0.00 0.20 0.10 0.02 0.11 0.00

17012 13.4 0.63 0.01 0.13 0.17 0.00 0.06 0.00

122480 1965.92 0.07 0.01 0.28 0.39 0.08 0.17 0.01

122482 105.72 0.12 0.00 0.25 0.50 0.00 0.12 0.01

122496 88.8 0.03 0.00 0.47 0.26 0.02 0.20 0.01

122706 77.83 0.02 0.01 0.33 0.31 0.07 0.25 0.00

122709 26.99 0.14 0.00 0.68 0.09 0.05 0.03 0.00

123153 369.7 0.00 0.01 0.05 0.38 0.00 0.55 0.00

200211 192.09 0.00 0.01 0.01 0.79 0.00 0.19 0.00

204343 126.54 0.44 0.00 0.29 0.11 0.02 0.14 0.00

206718 213.8 0.00 0.05 0.00 0.92 0.00 0.02 0.01

206732 583 0.00 0.07 0.03 0.70 0.00 0.20 0.00

206807 423.24 0.00 0.01 0.01 0.92 0.00 0.05 0.00

206811 187.57 0.00 0.01 0.01 0.92 0.00 0.05 0.01

206837 441.48 0.00 0.09 0.00 0.84 0.00 0.05 0.02

206845 140.27 0.00 0.02 0.01 0.85 0.00 0.10 0.02

207120 276.08 0.20 0.00 0.28 0.22 0.01 0.28 0.00

207127 20.59 0.00 0.01 0.00 0.42 0.00 0.57 0.00

207269 119.55 0.28 0.00 0.36 0.28 0.01 0.07 0.00

207277 8.99 0.16 0.00 0.42 0.07 0.21 0.15 0.00

207298 153.72 0.00 0.04 0.00 0.92 0.00 0.01 0.03

207309 10.17 0.00 0.00 0.00 0.95 0.00 0.05 0.00

207636 329.21 0.10 0.02 0.15 0.44 0.01 0.28 0.00

232930 11.19 0.56 0.00 0.27 0.10 0.00 0.07 0.00

300008 264.45 0.02 0.02 0.25 0.55 0.00 0.15 0.00

300379 17.72 0.27 0.00 0.54 0.07 0.00 0.12 0.00
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Appendix 3. Construction of real-valued log-ratio balances for compositional data and linear mixed modelling.

Ordinary statistical methods are generally designed for real-valued variables and use the absolute magnitude of the 
measurements as basic input for distinction and comparison between different observations. However, compositions consist 
of a number of variables which provide information about the relative levels of measurement between them using units 
like percentages, parts per million and similar. Compositional statistical methods exploit this information by focusing on the 
analysis of log-ratios between parts of the composition. Formally, given a D-part composition =[ 1,… , ] , a balance  
represents a contrast between two subsets of parts as

  
   

(1)

where  and  refer to the subsets of  and  parts of  going, respectively, into the + (numerator) and – (denominator) 
groups. In accordance with the relative scale of the data, instead of using the ordinary Pearson’s correlation measure, these 
subsets were determined according to proportionality between pairs of parts. Following Aitchison (1986), proportionality 
was measured by computing the matrix of log-ratio variances   where

, 

with var referring to the ordinary variance measure. A log-ratio variance ( ) that is close to 0 indicates that the two 
components  and  are nearly proportional (highly co-dependent); that is, their log-ratio is nearly constant. The 
information in  was used as input to perform hierarchical clustering of variables (R-mode) so that clusters of homogeneous 
parts according to proportionality were identified. In particular, the well-known Ward’s clustering method was used. Figure 
A3.1 shows for instance the resulting dendrogram for the water chemistry composition considered in this study.

Fig A3.1 Groupings of water chemistry components (mg/L) according to proportionality relationships from pairwise log-ratio variances and 
associated compositional balances ( , i = 1,...,6).

The obtained hierarchical structure of proportionality relationships can be meaningfully used to inform the construction of 
orthogonal balances according to the successive splits into two mutually exclusive groups of parts until only groups of one 
part are left. This procedure is known as sequential binary partition (SBP; Egozcue and Pawlowsky-Glahn, 2005). To facilitate 
interpretation, the successive balances  , for , are represented in Fig. A3.1 at each node of the dendrogram 
defining a binary split. Parts on the left and right branches go into the + and – subsets respectively in Eq. (1). Note that 
compositions of  parts give rise to  balances, which is in agreement with the actual number of degrees of freedom of 
the composition.

For the water chemistry composition, this meant six balances from a 7-part composition, with expressions given by:
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and it accounts for the relative importance of TP and SRP in relation the other parts in the composition. 

An analogous procedure was used to obtain meaningful log-ratio coordinates for the percentage 5-part land cover 
distribution according to proportionality between land cover categories, leading to balances denoted by  , with as   

 , represented in Figure A3.2.

Fig A3.2 Groupings of percentage land cover types according to proportionality relationships from pairwise log-ratio variances and 
associated compositional balances (  , i = 1,...,4).

The expressions of the land cover types balances follow:
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The obtained sets of balances  and  convey all the information about the original compositions. Balances decompose that 
information in terms of ratios of parts, which is coherent with the relative scale of compositions. Moreover, balances are real-
values variables which can be plugged into ordinary statistical modelling. In particular, we use them as explanatory variables 
into a linear mixed model (LMM) along with the other covariates. Formally, the vector of arsine-transformed observed EQR 
TDIs  from the ith catchment was modelled as

, 

, 

, 

where  and  were the vectors of coefficients of the fixed effects associated with, respectively, the water chemistry and 
land cover balances (  and  matrices) obtained as described above; and  was the vector of coefficients for the other 
explanatory covariates (  matrix). The catchment random effects were represented by the  term, and  was the within-
group random error term.

Note that alternative sets of balances can be actually constructed in infinitely many ways following a SBP not necessarily 
based on the  matrix. However, they all correspond with mutual orthogonal rotations of the coordinate system where the 
log-ratio-transformed data points are represented. As a consequence, as long as the particular statistical method used is 
invariant under such rotations, the results will be comparable. This is the case of linear mixed models (Palarea-Albaladejo 
et al. 2017), where overall results like goodness of fit measures, predictions, etc. are the same regardless of the balance 
representation. Only the regression coefficients for each balance will be obviously different, although compatible, depending 
on the particular balance representation chosen.
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