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Executive Summary

Purpose of research 

The aim of this DelugeAI project, funded by 
Scotland’s Centre of Expertise for Waters (CREW) 
and led by the University of Strathclyde, is to  
critically review the current state of Artificial 
Intelligence (AI) and Machine Learning (ML) 
technologies and methodologies in flood 
forecasting. The review is drawn from the latest 
research and assessments, evaluating AI’s 
potential for flood forecasting and anticipatory 
actions in the Scottish context, assessing the 
feasibility of incorporating AI and ML within 
the Scottish Environment Protection Agency’s 
(SEPA) current flood forecasting capabilities, and 
providing recommendations for future research, 
implementation and operationalisation. 

To achieve this, DelugeAI poses the following four 
research questions:

1. Is there growing evidence in the literature 
that can be used to identify potential AI/ML 
methodologies and technologies which could 
be applied to flood forecasting?

2. Can experts in AI/ML and hydrological flood 
forecasting be engaged to facilitate discussions 
and provide state-of-the-art guidance on key 
challenges, opportunities and future directions?

3. Can the practicalities of AI/ML integration into 
SEPA’s existing flood forecasting frameworks be 
assessed and quantified?

4. Can a plausible set of recommendations for 
advancing AI/ML-driven flood forecasting be 
developed outlining priority developments and 
implementation pathways?

Background

SEPA serves Scotland as the national flood 
forecasting, flood warning, and strategic flood 
risk management authority. Their role is critical in 
mitigating flood risks, protecting communities and 
enhancing preparedness for flood events. As part 
of SEPA’s Flood Warning Development Framework 
(2022-2028), SEPA outlined its strategic aim to 
upgrade its forecasting capabilities through targeted 
development and innovation, reflecting SEPA’s 
commitment to adopt advanced technologies and 
methodologies.

One key area of emerging innovation that SEPA, 
together with Scottish Water and the Scottish 
Government, were keen to explore was the 
application of AI and ML in flood forecasting. AI/ML 
offers the potential to transform flood forecasting 
by analysing large datasets, recognising patterns, 
and providing real-time predictions. AI/ML tools and 
innovations have undergone rapid development in 
recent years, providing the potential to strengthen 
SEPA’s ability to anticipate flood events, optimize 
response strategies and safeguard Scotland’s 
environment and population
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Key findings

1. Academic research to date prioritizes replacing traditional models with end-to-end ML approaches, particularly 
using Long Short-Term Memory (LSTM) models and Convolutional Neural Networks (CNNs), while operational 
settings favour hybrid models that blend AI with physics-based simulations for greater interpretability and 
performance.

2. Grey literature emphasises the role of AI-enabled monitoring in underserved areas, often leveraging citizen 
science, though these solutions are typically localized and challenging to scale due to unclear methodologies 
and high resource requirements.

3. AI/ML applications in model calibration and enhanced input forecasting (e.g., precipitation) remain generally 
underexplored, particularly with respect to their integration into full flood forecasting workflows.

4. The use of AI/ML for decision support and issuing warnings is still limited, but expected to grow, especially 
following international initiatives such as the UN's Early Warnings for All (EW4All).

5. Expert insights confirm hybrid models improve forecast accuracy across event types and highlight the 
operational efficiency gains AI can provide, particularly in data assimilation and mapping, while underscoring 
the irreplaceable role of human judgment.

6. Despite global interest and momentum, most AI/ML implementations currently serve to support rather than 
supplant traditional flood forecasting systems, with ongoing challenges in transparency, data integrity, and 
skills development.

7. A feasibility study highlights the need for SEPA to adopt a phased AI/ML integration strategy, beginning with 
high-impact, low-effort applications such as early warnings and response and decision support, which will 
build confidence and capability for more complex future integrations.

Recommendations

1. The DelugeAI project recommends SEPA to adopt a phased AI/ML integration strategy, beginning with high-
impact, low-effort applications over the next 1-2 years such as early warnings and response and decision 
support.

2. In the 3–5-year horizon, efforts should focus on monitoring involving local communities to increase trust in 
AI/ML enhanced forecasts, model calibration and integration of enhanced inputs to complement existing 
approaches.

3. SEPA should trial AI/ML pilots that maintain human oversight to build confidence and demonstrate value.

4. Suggest SEPA invests in targeted training to equip forecasters with AI/ML fundamentals, best practices and 
model interpretation skills, ensuring human expertise remains central.

5. SEPA’s AI/ML model selection should be guided by clear problem definitions, data availability and quality, 
interpretability needs, and computational constraints.
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1.0 Introduction 

1.1 Background and scope

Flooding poses a significant threat in Scotland, 
exacerbated by a warming climate (Sniffer, 2021). 
Traditional flood forecasting approaches using 
physics-based rainfall-runoff flood models are well-
established (Moor and Bell, 2001) but often struggle 
with complex hydrological processes and require 
extensive calibration. The rapid development and 
potential of Artificial Intelligence (AI) offers an 
emerging data-driven alternative, offering huge 
potential to complement existing capabilities that 
leverage large datasets to identify spatial patterns, 
widen the range of flood forecasting capabilities 
and predictive timescales (i.e., towards real-time 
predictions) and improve accuracy (e.g., Liu et al.,  
2025). AI – in particular Machine Learning (ML) 
and deep learning (DL) (e.g., Xie et al., 2021) 
– has the potential to transform SEPA’s flood 
forecasting capabilities in Scotland by integrating 
diverse and novel hydrometeorological data 
sources, recognising nonlinear and multivariate 
relationships, and providing predictive insights for 
response optimisation. AI presents an incredible 
opportunity to enhance early warning systems 
(EWS), improve disaster preparedness, and support 
adaptive flood risk management (e.g., Ghaffarian 
et al., 2023; UNU EHS, 2024; Cirri, 2023). However, 
challenges remain in model interpretability, data 
availability, and integration with existing flood 
forecasting approaches.

To address these challenges, the scope of the 
DelugeAI project was to critically review the current 
state of AI/ML technologies and methodologies in 

flood forecasting drawn from the latest research 
and assessments, evaluate its potential for 
flood forecasting and anticipatory actions in the 
Scottish context, and assess the feasibility of 
incorporating AI/ML with SEPA’s current flood 
forecasting capabilities, providing a clear set of 
recommendations for integrating AI/ML with SEPA’s 
existing flood forecasting capabilities in Scotland.

The multifaceted potential of AI/ML to enhance 
flood forecasting cannot be understated, spanning 
all aspects involved in producing, issuing and 
responding to a flood forecast, as well as the models, 
systems and processes that support them. This 
provides a complex picture of both the challenges 
and opportunities for using AI/ML to enhance flood 
forecasting. To structure this review and provide 
consistence and clarity, we adopted a framework 
that identifies seven phases of the flood forecasting 
process where we believe AI/ML can integrate with 
and/or enhance flood forecasting in a variety of 
ways, including monitoring, model development, 
and warning and response in real time (Figure 1). 
These seven phases were then used to guide and 
frame all aspects of the DelugeAI project, including 
the critical review, expert workshop, feasibility 
study and potential roadmap to ensure a consistent 
approach.

These seven phases are described in more detail 
as follows, including a rationale for their addition 
as an area where AI/ML may integrate with and/or 
enhance flood forecasting in Scotland as shown in 
Table 1.

Figure 1: Conceptual framework identifying seven flood forecasting phases where AI/ML can integrate with and/or enhance flood 
forecasting.



4

Table 1: The seven phases of the flood forecasting framework used in this study.

Phases Description

Monitoring Not all the monitoring data available is being used to support flood forecasting. Combinations 
and gathering of data that can be incorporated in this phase include using ML (i.e., remote 
sensing, citizen science, cameras). This phase is explored to assess how AL/ML could help 
communities that are not supported by existing flood warning services.

Model calibration Using ML to automatically recalibrate models (not in real time) and optimise existing tools 
could save demanding resource effort in the flood forecasting process.

Integration of enhanced weather 
data

Using ML to integrate flood forecasting with improved weather forecasts/data into existing 
models (e.g., improved precipitation forecasts).

Complement existing flood 
forecasting approaches

AI/ML could free up resources for high intensity/high impact events. ‘Normal’ conditions 
could potentially be replaced with AI/ML, but extreme events require the high-end models 
coupled with relevant flood forecasting expertise. This could also be extended to emulate 
complex processes with ML such as wave models, sea level rise, tidal surges, etc.

Replacing flood forecasting with 
AI/ML

This phase explores whether there is an opportunity to replace existing physically-based flood 
modelling assets using AI/ML techniques as well as making the calibration more efficient using 
AI/ML in real-time.

Decision support This phase explores the potential of data mining from alternative libraries and repositories 
to assess flood impacts in real-time (or near real-time) such as real-time inundation, impact-
based forecasting (e.g., forecasting how many houses a flood will affect).

Warnings and response AI/ML automation of the response and warning system (e.g., road closures) is the final phase 
of the flood forecasting process.

1.2 Project aim and objectives

The aim of the DelugeAI project, led by the 
University of Strathclyde, was to critically review the 
current state of AI technologies and methodologies 
in flood forecasting drawn from the latest research 
and assessments, evaluate its potential for flood 
forecasting and anticipatory actions in the Scottish 
context, assess the feasibility of incorporating AI/ML 
with SEPA’s current flood forecasting capabilities, 
and provide recommendations for future research, 
implementation and operationalisation. DelugeAI 
achieved this aim through the following four core 
objectives and activities:

1. Undertake a systematic literature review 
analysing existing AI/ML methodologies and 
technologies applied to flood forecasting to 
identify gaps and opportunities;

2. Convene an online workshop with experts 
in AI/ML and hydrological flood forecasting 
to facilitate discussions on key challenges, 
opportunities and directions;

3. Undertake a feasibility study to assess the 
practicality of AI integration into SEPA’s existing 
flood forecasting frameworks; and

4. Provide a set of recommendations for 
advancing AI/ML-driven flood forecasting, 
including a roadmap outlining potential priority 
developments and implementation pathways.

DelugeAI comprises an up-to-date evidence-based 
review that provides SEPA with a foundation that 
will inform of the potential of AI/ML and how it 
may be applied to flood forecasting to strengthen 
SEPA’s safeguarding of Scotland’s environment and 
population.  

1.3 Structure of the report

This report is structured as follows: Section 2.0 
provides an overview of the methods employed 
in the DelugeAI project; Section 3.0 summarizes 
the key findings from the critical literature review 
on the current state of AI/ML technologies and 
methodologies in flood forecasting, presents 
insights from an expert workshop evaluating 
their potential applications, and assesses the 
feasibility of integrating AI/ML into SEPA’s existing 
flood forecasting systems; Section 4.0 discusses 
the key challenges and opportunities associated 
with the integration of AI/ML to improve flood 
forecasting, drawing from the experience and 
knowledge of other related sectors; Section 5.0 
provides a set of recommendations together with 
a roadmap for their potential implementation and 
operationalisation; and Section 6.0 provides some 
concluding remarks. 
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2.0 Methods

2.1 Literature review

A structured literature search was conducted using 
Web of Science (WoS), a web-based bibliographic 
database. The aim was to identify publications at 
the intersection of flood forecasting and AI/ML. The 
search strategy was developed iteratively, refining 
and optimizing search terms for relevance and 
specificity. The core query targeted studies related 
to flood or inundation forecasting and AI methods, 
including both traditional ML, hybrid methods 
and deep learning architectures. The main search 
string combined terms for flooding (e.g., flood*, 
inundation) with forecasting-related terms (e.g., 
forecast*, predictive model*) and a comprehensive 
list of AI techniques and keywords (e.g., “machine 
learning”, “deep learning”, “neural networks”, 
LSTM, CNN, “data-driven”, “ensemble learning”). 
This was applied to both titles (TI) and abstracts 
(AB), and proximity operators (e.g., NEAR/15) were 
used to ensure conceptual relevance between 
terms. This query was applied across all publication 
years, restricted to the WoS Core Collection. The 
main query string is available in Appendix A.

The search was further refined using a combination 
of inclusion and exclusion filters by analysing the 
resulting keywords:

• Inclusion: Studies relevant to flood forecasting 
using AI, including both pure data-driven and 
hybrid approaches.

• Exclusion: Articles focused on precipitation, 
rainfall, sediment, runoff, reservoir operation, 
flood susceptibility, hazard mapping, and 
vulnerability assessments were removed using 
NOT filters in TI and topic (TS) fields as, although 
they can be related or used for flood forecasting, 
they are not strictly flood forecasting and do 
not fall within the seven identified phases. 
Additional unrelated applications (e.g., oil, 
spectroscopy, computer security, chemistry) 
were filtered out with key terms (e.g., oil, ship, 
CO₂, flood attack, fuel cell, etc.) from the TS and 
TI fields.

To explore the use of AI across the different phases 
of the flood forecasting chain, targeted sub-queries 
with relevant keywords and exclusion terms were 
developed and applied in combination with the 
main search. A list of the search queries is available 

in Appendix A. The topics covered for each theme 
include:

• Monitoring: using Internet of Things (IoT), 
citizen science, sensors, social media or remote 
sensing data. The search was performed in the 
Title AND Abstract.

• Model calibration: topics around offline 
learning, parameter estimation, error estimation 
or parameter tuning. The search was performed 
in the Title AND Abstract to reduce noise.

• Integration of enhanced weather data: 
incorporating weather, precipitation or 
atmospheric forecasts and bias correction, 
downscaling or ensemble forecasts. This search 
was conducted in the TS field.

• Complement existing flood forecasting 
approaches: focused on hybrid, surrogate 
and physics-informed models where ML is 
combined with traditional numerical models 
or where complex processes, such as storm 
surge or waves, are emulated. The search was 
performed in the TS OR TI fields, to ensure the 
key surrogate models were captured.

• Replacing flood forecasting with AI/ML: 
standalone data-driven models or real time 
calibration and learning. Surrogate, hybrid, 
statistical and physics-informed models were 
excluded. The search was constrained to Title 
AND Abstract to avoid returning the full query 
and having excessive noise. 

• Decision support: based around flood impacts 
and knowledge discovery. The search was 
constrained to the title as often terms such 
as impacts or decision support are mentioned 
in passing as context or justification for flood-
related research.

• Warnings and response in real-time: topics 
related to early warning systems (EWS), flood 
alerts and response strategies. This search was 
also constrained to the Title only. 

It is important to note that records can belong to 
more than one category, either because they cover 
more than one phase or because they mention other 
opportunities in the abstract. This is particularly 
noticeable in the use of keywords such as “flood 
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impact”, “decision support” or “hydrological model” 
as context or justification. However, further overlap 
existed as the phase boundaries cannot be strictly 
defined. A particularly difficult term to classify was 
“hybrid model/forecast”, as in the literature this 
term has many definitions: numerical modelling 
combined with ML; ML+ML, more than one type 
of ML model combined (e.g., CNN-LSTM model); 
statistical models used with numerical modelling; 
or statistical models combined with ML models. 
Although refinements were made to exclude data-
driven non-AI models, it is possible some of these 
hybrid models were returned in the results.

Due to the large number of articles returned by 
the search and considering they span the entire 
flood forecasting workflow, it was not possible 
to further screen the results to establish further 
exclusion/inclusion criteria, and therefore there 
will be a large number of false positives. However, 
by tagging each model with a category, the results 
become more relevant and informative.

To complement the peer-reviewed literature, a 
targeted search for grey literature was conducted 
to capture government programmes, pilot projects, 
recent innovations and industry applications of AI in 
flood forecasting. The aim was to identify initiatives 
and developments not yet reflected in academic 
publications, but still highly relevant to real-world 
implementation. Grey literature was sourced from 
the following platforms:

• Google and Google Scholar – for broad discovery 
of technical reports, white papers, projects and 
presentations.

• Government agencies – including GOV.UK for 
reports related to UK Environment Agency 
and DEFRA, SEPA, NRW and other national 
hydrometeorological services.

• International organisations – such as UNESCO, 
WMO (World Meteorological Organization), 
ITU (International Telecommunication Union), 
World Bank Group, and UNDRR (UN Office of 
Disaster Risk Reduction).

• Research and innovation platforms – including 
UKRI, CORDIS (EU) and Horizon 2020/Europe 
project repositories.

• Non-governmental and private sector sources 
– including engineering consultancies (e.g., HR 
Wallingford, Jacobs) and technology firms (e.g., 
Microsoft, IBM).

• Editorial and expert commentary platforms – 
including Nature News and The Conversation

Limitations around the methodology mainly concern 
discoverability, language barriers and bias. Many 
relevant projects may not be well-documented 
online or lack standardized metadata, making them 
difficult to locate. In addition, many consultancies 
or agencies may be working behind the scenes 
on AI approaches but do not disclose this on their 
websites. Language barriers can also restrict access 
to local initiatives published in non-English sources. 
Furthermore, there is an inherent bias toward 
more prominent or well-funded projects with the 
resources to produce public-facing documentation, 
potentially overlooking smaller or community-led 
efforts that may be equally impactful. There is also 
more bias in the tagging of the forecasting stage 
as it depended on expert judgement rather than a 
systematic keyword match.

2.2 Expert workshop

A DelugeAI expert workshop titled ‘Exploring the 
Use of Artificial Intelligence for Flood Forecasting 
in Scotland’ was held on 23 April 2025 with 
support from CREW and SEPA and facilitated by 
the University of Strathclyde team led by Drs Chris 
White, Douglas Bertram and Robert Atkinson. As 
the second of four project stages, it followed an 
initial literature review and led the development of 
a feasibility study and a 5-year roadmap for AI/ML 
integration in flood forecasting.

The online workshop convened over 35 specialists 
from academia, government and industry. Their 
combined expertise in hydrology, hydraulics, 
meteorology, AI and data science ensured insights 
across the entire flood forecasting value chain. The 
objectives were to evaluate existing AI applications, 
establish research and operational priorities 
for Scotland, identify opportunities and discuss 
challenges.

Structured in three sessions; (1) the event 
opened with a contextual overview and keynote 
presentation, (2) progressed through a series of 
lightning talks accompanied by open discussion 
to surface opportunities and challenges, and (3) 
concluded with a horizon-scanning exercise that 
aligned potential AI applications with the development 
of a potential roadmap for implementation. 

Appendix B provides additional details of the 
workshop including the agenda (B.1) and a list 
of attendees (B.2). B.3 provides details of the 
suggestions from the workshop attendees for AI 
developments in flood forecasting at the one, three 
and five-year horizons. Additional suggestions for 
areas of development were also offered.
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2.3 Feasibility study

Building on the insights gained from the literature 
review and expert workshop, a feasibility study 
assessed the practical integration of AI into SEPA’s 
operational flood forecasting system. While 
other phases of the DelugeAI project focused 
on conceptual understanding and stakeholder 
perspectives, this stage concentrated on evaluating 
the real-world viability of implementing AI solutions 
within SEPA’s current and future workflows.

The feasibility assessment focused on the seven 
AI application areas that map directly to the 
flood forecasting phases introduced in Figure 1 
and detailed in the introduction (Section 1.1). 
These phases reflect opportunities where AI 
and ML could meaningfully enhance forecasting 
performance – from initial data acquisition and 
model calibration to decision support and the 
delivery of real-time warnings. By aligning the 
feasibility study with this framework, the analysis 
maintains consistency across the project and 
ensures that recommendations are grounded in 
SEPA’s operational context. 

To ensure consistency with the project’s wider 
framework and objectives, the feasibility study was 

structured around eight Multi-Criteria Decision 
Analysis (MCDA) steps. This method provided a 
systematic and transparent approach for evaluating 
each AI solution by combining expert judgment 
from SEPA’s operational staff with weighted scoring 
aligned to strategic priorities. The use of MCDA 
ensured that complex trade-offs between technical 
feasibility, impact, and strategic alignment were 
addressed in a structured way. The next stages 
summarize the core implementation process, 
with further methodological detail available in 
Appendices C.1 to C.6. 

Seven hypothetical AI solutions, one for each 
phase of SEPA’s flood forecasting framework, were 
evaluated, spanning the full forecast chain from 
monitoring to warning response. Key stakeholders 
helped define the evaluation criteria and assign 
strategic weights to the five main evaluation 
categories. Each solution was scored by experts 
using a standardized 1-5 scoring scale, with results 
validated through peer review. Weighted scores 
were calculated to rank solutions, followed by an 
impact-effort analysis to assess implementation 
complexity. Final classifications identified priority 
solutions for potential adoption. Further detail can 
be found in Appendix C.
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3.0 Results

3.1 Systematic literature review

A total of 1,845 papers across all years were 
identified in the final WoS dataset following the 
application of refined inclusion and exclusion 
criteria. The majority were research articles 
(1,470), including peer-reviewed journal articles 
(1,421), early access articles (25), and those also 
categorized as proceedings papers (15) or book 
chapters (6). Conference proceedings papers came 
to 318 entries. Additionally, there were 50 review 
papers and a small number of other types, such 
as editorial materials (5), corrections (2), and one 
retracted publication.

Annual publication trends revealed a rise in research 
activity from 2018, with exponential growth after 
2020 (Figure 2), reflecting the increased interest in 
operational AI applications and climate adaptation 
technologies. Notably, 70% of the articles were 
published from 2020 onwards, highlighting a 
recent surge in academic focus on these topics. 
The rise of deep learning, especially the adoption 
of recurrent neural networks (RNNs) like the LSTM 
model, coincides with this period. LSTMs are 
especially effective at learning from sequential data 
because they include memory cells that help retain 
information over longer time periods, allowing 

them to remember previous inputs and capture 
long-term dependencies.

The majority of the articles focused on 
complementing or replacing the hydro-
meteorological flood forecasts, whilst very little 
research has gone into model calibration, although 
the interest in this stage is more recent (Figure 2). 
The use of AI tools in combination with monitoring 
activities was the next most researched area, 
followed by decision support tools and using AI to 
integrate enhanced meteorological inputs. Focus 
on developing warning and response initiatives was 
low, but interest has risen in recent years, especially 
in 2024 (Figure 3).

The growth of end-to-end ML (replace) papers may 
reflect the accessibility of historical flood data, 
the maturity of DL frameworks, and the appeal 
of avoiding the complexity of physical modelling. 
However, hybrid models, where AI complements 
physics-based models, are also a rapidly expanding 
area (Figure 3), bridging the gap between 
operational practicality and data-driven innovation. 
These models stem from the need to improve the 
accuracy of physical models, make predictions 
faster and in real-time, and address the black-box 
nature and interpretability concerns of end-to-end 

Figure 2: Cumulative publication records over time stacked by forecasting stages (colours). Black dashed curve is total unique 
publications (no overlaps).
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Figure 3: Number of publications per year stacked by forecasting stage for the last 10 years. Note 2025 reflects only five months 
(Jan-May).

ML models (Slater et al., 2023; Byaruhanga et al., 
2024; Zhao et al., 2024).

A wide variety of ML models appeared in the 
results, from simple classical neural networks (e.g., 
multilayer perceptron (MLP)) to complex deep 
architectures with enhancements (e.g., STA-LSTM; 
Ding et al., 2020). To gain insights into model usage 
trends, a high-level keyword match was conducted 
across the title, abstract, and author keywords for 
the most frequently cited model types. These were 
grouped into five broad categories: traditional 
ML (e.g., random forests (RF) or support vector 
machines, SVM), deep learning (e.g., RNN, CNN, 
Transformers), ANN, generative models (e.g., 
generative adversarial networks (GANs)) and, finally, 
statistical and others (e.g., ARIMA (autoregressive 
integrated moving average) or fuzzy logic).

Earlier models were predominantly based on ANN 
structures, with traditional ML techniques appearing 
more frequently in the early 2000s, of which RF 
and SVM were the most used. ANNs remained the 
most common model type until the early 2020s. DL 
began to gain traction from around 2018 and, by 
2024, had become the most widely used category. 
This trend aligns with the overall rise in publication 
numbers and reflects the growing adoption of DL 
techniques in flood forecasting. Lastly, although 
still a small proportion, the appearance of GANs 
from around 2021 highlights growing interest in 

advanced generative architectures for emulating 
flood dynamics. Within the deep learning category, 
the most used models are the LSTMs and CNNs, 
whilst the most common traditional models are 
SVMs and RFs. This analysis coincides with the 
results from comprehensive reviews on the use of 
AI for flood risk management (Liu et al., 2025) and 
for short-term flood forecasting (Asif et al., 2025). 

The most common DL models are employed 
for different problems as they have different 
strengths and limitations (Asif et al., 2025). For 
image processing and spatial data, CNNs are a 
common tool (e.g., Guo et al., 2020). Time series 
or sequence problems are often addressed with 
recurrent networks, in particular LSTMs (e.g., 
Hunt et al., 2022), although GRUs are simpler and 
lighter models that are gaining traction in this area  
(Zhao et al., 2024). Generative models, such as 
GANs, are mostly employed to generate synthetic 
data (e.g., Weng et al., 2023) or fill data gaps, which is 
particularly valuable given the lack of abundance in 
extreme events like floods in many datasets. When 
reviewed and evaluated for short-term (<48 h)  
predictions, Asif et al. (2025) found that, overall, 
standalone models performed well, although the 
errors increased with lead times. Generally, LSTM 
performance was excellent from 1 to 12 hours 
while RF models performed best at 12 to 48 hours 
lead times. The best performing models across 
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all lead times, however, were hybrid models that 
combined different ML algorithms, leveraging the 
strengths from each.

Combining AI with IoT and ground-based sensors 
(e.g., Mousavi et al., 2021; Bande and Shete, 
2017); cameras (e.g., Jafari et al., 2021), or remote 
sensing (e.g., Lammers et al., 2021) are common 
for monitoring before, during and after flooding 
events. These technologies are particularly useful 
for data scarce regions. However, drawbacks include 
the costs of implementation and maintenance 
of sensors, weather stations, cameras, etc.; the 
localized nature of these approaches; or the 
challenges around interoperability and data 
integration (Bukhari et al., 2025).

Decision support tools increasingly incorporate 
ML algorithms to assess flood impacts – such as 
predicting damage to properties (e.g., Alipour et al., 
2020) or agricultural land (e.g., Jiang et al., 2022). 
These models are often built using RFs, which are 
well-suited for classification and regression tasks. 
RFs are popular in this context due to their robust 
performance, low computational demand and 
relatively high interpretability compared to deep 
learning methods. Unlike many neural networks, 
RFs allow users to trace how decisions are made 
through feature importance metrics and tree 

structures, making them valuable for applications 
that require transparency and stakeholder trust.

Warning and response and EWS are the aim of 
many projects and research. However, they are not 
necessarily tackling the automation of warnings, 
but rather working towards accurate forecasting, 
faster predictions or data integration or aggregation 
from which a warning can be issued. Therefore, it is 
hard to distinguish in the literature search between 
the use of AI for informing the warning stage and 
for issuing warnings.

3.2 Grey literature review

In addition to the systematic literature review, a 
diverse set of flood forecasting-related projects, 
workgroups, and operational products were 
also identified in the grey (non-peer-reviewed) 
literature (ca. 50 projects) demonstrating how AI is 
rapidly (and increasingly) being applied to improve 
flood forecasting and management. Most initiatives 
focus on developing AI models to complement or 
accelerate traditional hydrodynamic approaches 
(Figure 4). There was also a notable emphasis on 
monitoring through sensor networks, satellite data 
integration, and enhancing forecasts for small or 
ungauged catchments where conventional data are 
limited.

Figure 4: Co-occurrence matrix of grey literature projects according to their forecasting stage. Numbers indicate the number of 
projects in each overlapping category. Total count per category is in the main diagonal.



11

Early warning systems remain vital for protecting 
communities and building flood resilience and 
are being pushed by the United Nation’s Early 
Warnings for All (EW4All) initiative. AI-driven 
technological advancements enable these systems 
to reach broader populations more efficiently. 
Consequently, growing interest is evident in AI 
applications for warnings and response, as well 
as decision support tools – particularly within 
the broader hazard, risk, and disaster mitigation 
frameworks that encompass flooding, for example 
under the UN’s platform AI4Good or within the ITU 
AI for natural disaster management focus group 
(FG-AI4NDM).

AI-based decision support tools aim to translate 
flood forecasts into actionable insights. The  
AI-RiskAnalyzer (by FloodWaive) supports real-time 
flood risk evaluation through DL and localized data, 
helping assess impacts and respond effectively. The 
ISRV project (Aachen University) is developing an 
interactive tool for transport operators, combining 
AI forecasts with infrastructure risk to guide flood-
related decisions.

There were very few projects specifically focused 
on model calibration or enhanced inputs within the 
flood forecasting domain (Figure 4). However, AI 
is actively used in related fields – such as weather 
forecasting – to develop models and forecasts that 
indirectly support flood forecasting, even when 
flood prediction is not their primary objective. These 
models are not covered by this review but future 
activity should examine developments in these 
areas as well, considering complementary activity, 
transferrable approaches, etc. that may benefit 
flood forecasting. Nonetheless, developments in 
these adjacent domains, particularly in improving 
atmospheric and precipitation forecasts using AI, 
may hold significant potential for future integration 
into flood forecasting workflows and are worth 
monitoring. For instance, the UK’s Met Office is 
developing an experimental ML-based weather 
forecast, the FastNet, a model based on graph 
neural networks (GNNs). Additionally, the European 
Centre for Medium-Range Weather Forecasts 
(ECMWF) recently made the AIFS operational, the 
AI-driven version of their integrated forecasting 
system (IFS). These AI-generated outputs could 
serve as inputs in future flood forecasts.

Most examples lack clear technical detail, and 
terms like AI or ML are mentioned without 
further elaboration – particularly in cases where 
AI is applied mainly for data processing or fusion, 
rather than for predictive modelling. Deep 
Learning techniques appear more frequently in 
the forecasting stages, where LSTMs (e.g., used 

in HydroForecast or HydroSphereAI products or 
by the AI4Flood team) or convolutional networks 
(e.g., in projects by NIWA or JBA) are employed. 
These models are used to either accelerate and 
complement traditional models (e.g., AI-FloodCast), 
or to replace them entirely, as in the models 
developed through the FruítPunch AI “AI for Inland 
Flood Prediction” challenge. CNNs are mainly 
used for flood extent mapping and spatial pattern 
recognition; for instance, FloodSENS is based on 
a U-Net architecture. Additionally, several cases 
showcase how using large language models (LLMs) 
can serve as warning and response mechanisms, 
such as UNESCO’s flood awareness chatbot.

A wide variety of data sources are used across 
the projects, although technical details are often 
limited. Satellite data, such as Sentinel imagery, are 
employed for flood mapping, real-time monitoring, 
or as inputs into AI models (e.g., the CAMEO 
project in Ireland or DTU’s Wet Index tool). Sensor 
networks and in-situ measurements, including 
river gauges and IoT devices, are also widely used 
– particularly for real-time monitoring in small 
catchments (e.g., KI-HopE-De project in Germany or 
FloodAI in England). AI is also applied to transform 
citizen science inputs or crowdsourced data into 
usable hydrological information that can feed into 
flood models, as is done in CrowdWater, OpenSafe 
Fusion or BluPix. However, the integration of 
multi-source datasets is usually described in broad 
terms, with little information on how the data is 
processed, cleaned or fused with AI. Projects like 
Wet Index (developed by DTU), HüPros (by Aachen 
University) or FAST (from Intellialert Technologies) 
aim to integrate diverse geospatial and hydrological 
data – ranging from soil moisture to seawater levels 
– into unified platforms that lead to flood forecasts 
and warnings. Detailed documentation of their 
data processing workflows remains scarce, making 
it difficult to assess scalability and robustness.

Several initiatives apply digital twin concepts 
to flood management. Projects like DestinE 
(Destination Earth) aim to build large-scale digital 
twins of the Earth system, providing enhanced 
weather input data with flood-related applications. 
More localized efforts such as PYRAMID and 
FLOODTWIN use digital twins to simulate urban 
flooding scenarios by integrating live sensor data, 
weather forecasts, and physical models. AI can 
be integrated into digital twins in many ways, for 
example, the PYRAMID project used ML to identify 
floating debris from floods and establish risk. 
However, this same project, led by researchers 
at Newcastle and Loughborough Universities, 
remarked that the technical challenges around 

https://aiforgood.itu.int/
https://www.itu.int/en/ITU-T/focusgroups/ai4ndm/Pages/default.aspx
https://www.floodwaive.de/products
https://www.iww.rwth-aachen.de/go/id/bejwho/lidx/1
https://www.metoffice.gov.uk/research/approach/collaboration/artificial-intelligence-for-numerical-weather-prediction
https://www.ecmwf.int/en/about/media-centre/news/2025/ecmwfs-ai-forecasts-become-operational
https://www.upstream.tech/hydroforecast
https://www.aquanty.com/hydrosphereai
https://ai4flood.com/
https://storymaps.arcgis.com/stories/74b76789244249158b03c9c6e3c865b5
https://www.jbaconsulting.com/2024/02/14/transforming-the-way-we-work-with-artificial-intelligence/
https://www.floodwaive.de/products
https://www.fruitpunch.ai/challenges/ai-for-earth-2-inland-floods-prediction
https://www.fruitpunch.ai/challenges/ai-for-earth-2-inland-floods-prediction
https://incubed.esa.int/portfolio/floodsens/
https://www.unesco.org/en/articles/use-artificial-intelligence-disaster-risk-reduction-africa
https://ceadar.ie/blog/cameo-online-platform-of-earth-observation-data/
https://ceadar.ie/blog/cameo-online-platform-of-earth-observation-data/
https://www.dtu.dk/english/newsarchive/2024/03/ai-predicts-flooding
https://ki-hope.de/
https://engageenvironmentagency.uk.engagementhq.com/floodai
https://crowdwater.ch/en/start/
https://www.opensafefusion.com/index.html
https://www.opensafefusion.com/index.html
https://www.mayberenusiva.com/blupix
https://www.iww.rwth-aachen.de/go/id/bejvfi/lidx/1
https://fastflooding.com/en/
https://destine.ecmwf.int/provider/on-demand-extremes-digital-twin/
https://gtr.ukri.org/projects?ref=NE%2FV00378X%2F1
https://www.hull.ac.uk/research/institutes/eei/harnessing-the-power-of-two
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developing a digital twin are considerable. In this 
case, they are particularly constrained by the 
quality of the driving precipitation datasets.

AI-based flood forecasting initiatives range from 
hyper-local small catchment solutions to global 
platforms or products designed for scalability 
and transferability. Local solutions often emerge 
from immediate needs to increase community 
flood resilience, are tailored to the specific 
infrastructure and hydrological characteristics of 
an area and often rely on the monitoring assets 
to inform early warning systems. On the other 
hand, larger complementary forecasting tools (e.g., 
HydroForecast, HydroSphereAI, FloodMapp, etc.) 
are usually products that rely on weather forecasts 
or satellite data, and are transferable across regions 
with some model calibration or tuning for local 
relevance.

These diverse applications reflect the different  
actors involved. At the local level, council-led 
initiatives often partner with environmental 
consultancies or research institutions to address 
specific urban or regional challenges. For example, 
Auckland Council, in collaboration with Mott 
Macdonald, are working to develop an ML solution 
for predicting real-time surface flooding. Other 
initiatives, like CENTAUR, are driven by university-
led research with a focus on enhancing decision 
support at the urban scale. National agencies and 
government research bodies, such as NIWA (New 
Zealand) or DMI (Denmark), operate within more 
formal governance structures and are responsible  
for operational flood models and services. 
Meanwhile, environmental consultancies and 
tech companies often lead the development 
of proprietary forecasting products, either 
independently or through public-private partner-
ships. On a global scale, large consortia coordinated 
by organisations such as WMO or UNDRR aim to 
create generalisable tools, platforms or working 
groups. Additionally, organisations such as the Red 
Cross Red Crescent Climate Centre or UNESCO focus 
on early warning systems and decision support in 
under-resourced or high-risk regions, often with a 
focus on capacity building and humanitarian aid 
response.

3.3 Expert workshop

The workshop underscored that hybrid  
AI-hydrology approaches reliably enhance flood 
forecasts. Combining physical rainfall-runoff or 
hydraulic simulations with ML post-processing 
produced more accurate river-flow and extreme 

event predictions, demonstrating clear benefits 
over standalone models. Participants agreed that 
AI can obviously accelerate forecasting workflows 
whether by fusing remote sensing observations 
with gauge data, post-processing ensemble outputs 
or using convolutional networks to reconstruct 
flood extents under cloud cover while emphasising 
that human expertise must remain central to 
interpretation and warning issuance.

A systematic review revealed a rapidly expanding 
global landscape of AI in flood forecasting since 
2018, ranging from large-scale platforms (for 
example, Google’s Flood Hub) to regional projects 
such as FloodCast, FloodAI and FloodWaive. In 
virtually every case, AI complemented rather 
than supplanted existing forecasting systems, 
delivering decision support at multiple junctures of 
the forecast chain. Expert discussions highlighted 
common concerns around “black box” models, 
data quality and the need to keep a human in the 
loop to maintain trust, particularly in high stakes 
scenarios.

Participants reached a clear set of findings that 
highlight AI’s potential while emphasising the need 
for robust scientific and ethical practices. Everyone 
agreed that hybrid methods, which combine 
traditional hydrological models with ML, produce 
noticeably better forecasts for both everyday flows 
and extreme events. The experts pointed out that 
AI can speed up tasks such as gathering remote 
sensing data and creating flood maps, but they also 
stressed that human judgement remains essential 
for interpreting results and issuing warnings. The 
group of experts noted that since 2018 there has 
been a rapid increase in AI tools that support rather 
than replace existing forecasting systems, and they 
identified common challenges around data quality, 
model transparency and staff training.

The workshop’s sessions highlighted several 
essential discussion points aimed at shaping the 
future role of AI in Scotland’s flood forecasting. 
Participants explored how to translate the insights 
gained into practical steps, emphasising the need 
for balance between technological innovation and 
human expertise. These discussion points reflect 
the collective priorities and concerns raised by 
experts throughout the event:

• Emphasise low risk, quick win AI pilots that 
maintain human oversight to build confidence 
and demonstrate value.

• Strengthen data quality through accurate  
QA/QC procedures, expanded sensor networks 
and shared repositories to support reliable AI 
forecasting.

https://www.floodmapp.com/products
https://www.mottmac.com/en-gb/projects/data-driven-decisions-for-better-city-planning-and-management/
https://www.mottmac.com/en-gb/projects/data-driven-decisions-for-better-city-planning-and-management/
https://www.sheffield.ac.uk/centaur
https://sites.research.google/gr/floodforecasting/
https://floodcast.com.br/
https://engageenvironmentagency.uk.engagementhq.com/floodai
https://www.floodwaive.de/
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• Design transparent, impact-based warning 
systems that clearly communicate risks and 
tailor messages according to user.

• Invest in targeted training to equip forecasters 
with AI fundamentals, ethical best practices and 
model interpretation skills, ensuring human 
expertise remains central.

• Establish a multi-stakeholder group to design 
ethical frameworks and best practices, 
addressing transparency, equity, legal 
considerations and human oversight.

Appendix B.3 provides details of workshop 
attendees suggestions for AI developments in Flood 
Forecasting at the one, three and five-year horizons. 
Additional suggestions for areas of development 
were also offered and recorded in Appendix B.3.

3.4 Feasibility study

The MCDA evaluation produced comprehensive 
scoring profiles across all seven AI solutions, 
revealing significant variation in performance 
across the five assessment criteria. Solutions 
demonstrated diverse strengths, with some 
excelling in technical capabilities while others 
showed superior deployment feasibility or cost-
effectiveness. The analysis identified clear patterns 
that informed the prioritisation of solutions for 
SEPA's implementation strategy.

Following consensus building with the stakeholder 
group, a criteria weighting for the project was 
adopted as shown below in Table 2. It is noted that 
decisions in this exercise are dependent on values 
chosen that require both a degree of consensus 
building and an understanding of sensitivity. 

Repeating the exercise at regular intervals and with 
different stakeholders’ representations would be 
beneficial.

The aggregated weighted scores revealed a clear 
hierarchy of implementation priorities, as detailed 
in Table 2. High-priority solutions, highlighted 
in green (scoring above 3.0) emerged as those 
offering the optimal balance of technical capability, 
practical feasibility, and strategic value for SEPA's 
operational context. 

The MCDA analysis reveals a clear strategic 
pathway for SEPA's AI adoption in flood forecasting. 
The emergence of Warnings and Response and 
Decision Support as high-scoring, easily deployable 
solutions provides an opportunity for immediate 
impact while building organisational capability 
and confidence. These solutions can serve as 
stepping stones toward more ambitious technical 
implementations like comprehensive Weather 
Input integration and eventual replacement of 
forecasting with AI initiatives. A breakdown of the 
feasibility study results is available in Appendix C.7 
and Appendix C.8.

The analysis demonstrates that technical 
excellence alone does not guarantee high priority 
status. Solutions must balance technical capability 
with practical considerations of deployment 
feasibility, cost management, and alignment with 
organisational objectives. This balanced approach 
ensures sustainable AI adoption that delivers 
tangible benefits while building toward more 
transformative long-term capabilities.

Moving forward, SEPA should consider a phased 
implementation approach that begins with high-
priority, low-effort solutions while developing 
the infrastructure and capabilities necessary 

Table 2: MCDA scoring matrix for AI flood forecasting solutions. This table presents the detailed scoring breakdown for each AI 
solution across the five assessment criteria, along with the calculated overall weighted scores. Scores range from 1 (Very low 
feasibility) to 5 (Very high feasibility) for each criterion. Solutions are ranked by their overall weighted scores, clearly distinguishing 
high-priority solutions (≥3.0) from medium-priority options. Green highlighting indicates high-priority solutions whereas amber 
highlighting indicates medium-priority solutions. For further information on weighting and scoring see Appendices C.4 and C.5.

Category Weight (%) Monitor Model 
Calibration

Enhanced 
weather 
inputs

Forecast 
(Complement)

Forecast 
(Replace)

Decision 
Support

Warnings 
and 

Response

Technical 30% 3 3 4 4 4 3 2

Deployment 15% 1 4 3 1 2 4 4

Improving 
Flood 
Resilience

25% 4 4 3 4 4 2 4

Cost/ 
Resource

20% 3 2 3 2 2 4 4

Sustainability 
& Ethics

10% 3 2 3 1 2 4 4

Total 100% 2.95 3.1 3.3 2.85 3.1 3.2 3.4
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for more complex AI integrations. This strategy 
maximizes both short-term impact and long-term 
transformation potential in flood forecasting 
capabilities.

3.5 Summary

The development of AI/ML in flood forecasting 
reflects a dynamic interplay between academic 
innovation and real-world implementation. The 
academic literature exhibits a strong focus on 
advancing model architectures, pushing boundaries 
and exploring the theoretical potential of AI to 
enhance or, in some cases, fully replace traditional 
hydrometeorological forecasting systems.  
The exponential rise in publications since 2018 –  
particularly those employing deep learning 
methods such as LSTM and CNN – coincides with 
broader interest in AI for climate resilience and 
adaptation. Academic efforts frequently target 
performance metrics, benchmark comparisons 
and algorithmic novelty, often just very slightly 
improving a previous model with a more complex 
alternative.

In contrast, the grey literature and the expert 
workshop reveal a more pragmatic approach. 
Projects led by environmental agencies, 
engineering consultancies, and humanitarian 
organisations demonstrate a preference for 
using AI to complement and strengthen existing 
forecasting tools rather than displace them. These 
implementations are solution-driven and prioritize 
feasibility, speed, usability, system integration, and 
interpretability. This was echoed by the experts 
during the workshop, highlighting the improvement 
of both routine and extreme predictions with 
hybrid modelling.

Hybrid models, where AI complements traditional 
models, as well as aiding interpretability (Slater 
et al., 2023; Zhao et al., 2024), have the ability to 
integrate large datasets and various sources of 
data at once, including outputs from ensemble 
forecasts, helping reduce and address uncertainties 
(Slater et al., 2023; Byaruhanga et al., 2024), an 
overlooked point in much of the literature on end-
to-end ML models. Therefore, ensemble flood 
forecasts are also easier to produce with coupled 
models (Byaruhanga et al., 2024). However, as 
highlighted in the workshop, AI tools cannot yet 
replace forecaster judgement.

Both in academic and grey literature, LSTM 
networks emerge amongst the most frequently 
applied deep learning models, showing influence 
between research priorities and practical feasibility. 

The widespread adoption of LSTMs reflects their 
balance between performance and interpretability, 
as well as their ability to handle sequential data. In 
addition, they are mature enough that many toolkits 
and tutorials exist, lowering the barrier to entry for 
both researchers and practitioners. This popularity 
is echoed in grey literature applications where 
reliability and clarity are critical for decision-making 
in operational settings. CNNs were also noted in 
the workshop for their utility in reconstructing 
flood events under cloud cover, supporting rapid 
post-event assessments and large-scale inundation 
mapping.

Recent academic work, however, is increasingly 
characterized by the exploration of more 
complex and data-intensive architectures such 
as Transformers, GNNs, and hybrid ensemble 
approaches. While these models often achieve 
marginal gains in performance benchmarks, 
they typically require larger datasets, higher 
computational power, and more intricate training 
procedures. As a result, their practical applicability 
in real-world, resource-constrained environments 
remains limited for now, with potential for future 
improvements as better systems or more resources 
become available. The type of model used depends 
on the problem that is being solved. Fluvial 
flooding, for example, is a simpler time series 
problem that can be addressed with classical ML 
(Liu et al., 2025); whilst pluvial or coastal flooding 
present non-linear complex interactions between 
hydrometeorological parameters, requiring a 
model that can handle spatio-temporal patterns, 
usually deep learning (Liu et al., 2025).

As well as defining the problem, it is important to 
consider what data is available, both in terms of 
quantity and quality (Al-Rawas et al., 2024; Asif 
et al., 2025, Liu et al., 2025). These questions are 
vital to address model accuracy and overfitting 
(where the model learns the training data very well 
but cannot generalize to unseen data), impacting 
viability of the model outputs and the use of AI/ML. 
The answers to these questions should determine 
the complexity of the system (Byaruhanga et al.,  
2024). Other noted challenges around data 
include ensuring data integrity, quality control and 
diversity of sources, which also tackles reducing 
bias (Liu et al., 2025). Maintaining transparency 
and accountability in AI outputs and throughout all 
stages is still a concern for researchers and experts.

Monitoring is theoretically one of the most 
accessible and impactful entry points for integrating 
AI into flood forecasting systems. The frequency 
of digital twins, IoT-based infrastructures, and Big 
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Data platforms in the grey and academic literature 
demonstrate the use of AI to aggregate vast 
volumes of sensor, camera, or citizen-sourced data 
to detect patterns, anomalies, or early signs of risk. 
These tools are relatively low-risk to implement 
and can be especially valuable in underserved or 
at-risk areas, where moving from a no warning 
system to one based on tangible, real-time data can 
significantly improve outcomes and build public 
trust in AI-driven systems. AI-enhanced monitoring 
also supports community engagement, as it can 
incorporate citizen science and local knowledge, 
raising awareness and empowering populations 
to play an active role in risk reduction, and thus 
contributing to democratizing AI (Bukhari et al., 
2024; Liu et al., 2025). However, implementation is 
not one-size-fits-all; local hydrological conditions, 
infrastructure maturity, and institutional capacity 
shape the potential benefits (Bukhari et al., 
2025). This is also reflected in the feasibility study 
scoring. Where historical data exists but remains 
underutilized, AI can unlock value by training 
models to extend or improve existing observational 
networks, but this requires considerable time, effort 
and monetary investment. Solutions must balance 
technical capability with practical considerations 
of deployment feasibility, cost management, and 
alignment with organisational objectives.

Despite the growing breadth of research and 
application, both the academic and grey literature 
reveal important gaps in current AI-driven flood 
forecasting practice. One of the most notable is the 
limited attention to model calibration. There could 
be several reasons for this. For example, model 
calibration could be considered a hybrid model 
where AI is used to enhance a numerical model and 
therefore would be tagged under “complement”. 
On these lines, there could also be a discovery gap 
as language around this task is not very specific and 

targeted, making it difficult to create a search string 
that captures everything.

Regarding the warning and response stage, 
although comparatively little research and emphasis 
has been given to this, we expect it to receive 
more focus as the UN EW4All initiative pushes 
innovation in the coming years, particularly for 
those who currently do not receive early warnings. 
Furthermore, the feasibility study found that these 
solutions score highly as they are deployable to 
provide impact and opportunities. The workshop 
stressed the importance of starting with low-risk 
AI pilots that maintain human-in-the-loop control 
to build institutional confidence. This aligns with 
the feasibility study recommendation of a phased 
AI adoption strategy. Starting with low-effort, high-
impact solutions in decision support and warnings 
and response can deliver early wins while laying the 
groundwork for more advanced capabilities. This 
balanced pathway helps bridge technical potential 
with institutional readiness. 

Projects in the grey literature typically involve 
government agencies, research institutions, and 
private sector technology providers. Multi-sector 
collaborations are common, facilitating data 
sharing and practical deployment. Knowledge 
sharing, open-source data and interdisciplinary 
collaboration have also been highlighted in the 
literature as a key necessity for fast application of 
AI in operational settings (Al-Rawas et al., 2024; 
Byaruhanga et al., 2024, Liu et al., 2025). In addition, 
although some AI implementations are simple, the 
more complex DL models require specific skills. 
The literature remarked that there will need to 
be changes in education and preparation of the 
workforce (Slater et al., 2025) and the experts 
highlighted the need for upskilling staff to interpret 
and apply AI driven insights.
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4.0 Discussion

From the expert workshop, it was evident that 
recurrent ML models, particularly LSTM networks, 
have become widely used in flood forecasting due 
to their ability to model temporal dependencies 
within time series data. This is also reflected in 
the literature review conducted (Section 3.0). 
Unlike other AI models that treat each input 
independently, LSTMs consider both current and 
past inputs, making them well suited for capturing 
patterns in sequences (time sampled data) such as 
rainfall, river discharge, or soil moisture over time. 
This capability enables them to forecast future 
events with improved temporal awareness.

Beyond temporal modelling, some researchers 
have employed two-dimensional (2D) CNNs to 
incorporate spatial context into flood predictions. 
These models can process spatially distributed data 
such as satellite imagery or gridded precipitation 
fields, enhancing the ability to detect regional 
patterns relevant to flood events. Again, the 
interest in these models is well reflected in the 
literature review.

Defining the problem clearly is therefore essential, 
particularly in spatial terms. Does the model 
need to provide a highly localized forecast based 
on timeseries data, cover multiple catchments, 
or operate at a national scale? Equally important 
to this problem definition is the question of data 
availability: what type, resolution, and quality 
of data are accessible to train the model? The 
quality of the input data will ultimately determine 
the quality of the model outputs – if the training 
data are poor, the predictions will be as well. In 
terms of potential implementation, understanding 
the technical constraints must be placed in 
consideration alongside any potential policy or 
financial constraints as well.  This activity would 
likely form a key part of future phased consideration 
of AI adoption and implementation.

There was also broad agreement between the 
views expressed in the workshop and use-case as 
exposed by the literature review:  AI models are 
often used in tandem with traditional hydrological 
models, resulting in hybrid frameworks that 
combine the strengths of data-driven learning with 
physics-based simulation. Common integration 
strategies often take the form of:

• AI2Hydro: an AI model processes raw input 
data, such as meteorological observations or 
remote sensing imagery and its outputs serve 
as inputs to a hydrological model. For example, 

an AI model might estimate soil moisture or 
rainfall intensity from satellite data before 
passing those estimates to a rainfall-runoff 
model. AI models can also be used to automate 
data preprocessing pipelines by identifying 
errors or gaps in raw readings from sensors.

• Hydro2AI: the hydrological model performs 
initial simulation, and its outputs are fed into 
an AI model that refines the forecast. This setup 
allows the AI model to correct for systematic 
errors or biases in the hydrological model, 
improving predictive accuracy.

• TunedHydro: here, the AI model is used to 
optimize the parameters of the hydrological 
model itself, such as infiltration rates or routing 
coefficients, leading to better calibration and 
overall model performance.

• ModelOfModel: in this configuration, an AI 
model is trained to replicate the outputs of a 
hydrological model rather than the physical 
system directly. Once trained, the AI surrogate 
can produce results much faster than the 
original model, making it suitable for real-time 
forecasting or large-scale scenario testing.

The workshop participants expressed interest in 
the use of generative AI in the broader business 
context:

• Intelligent decision support: in this context, 
using AI models to summarize forecasts, 
support managerial approval processes, and 
explain decisions (e.g., why a warning was not 
issued); also includes using LLMs to enable 
natural (human) language queries of forecast 
data.

• Media Monitoring: using AI models to gain 
an overview of citizen perspectives via social 
media monitoring.

• Digitisation: the use of AI models as part of 
digital transformation processes such as the 
conversion of paper records to digital (machine-
readable) formats.

• Productivity: the use of LLMs to summarize 
complex information and produce the initial 
draft of technical reports. 

In operational settings, both AI and hydrological 
models often require periodic retraining to maintain 
performance. This is particularly significant in 
environments where the underlying hydrological 
characteristics – such as land use, saturation levels, 
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or drainage patterns – evolve over time and is 
critical in the context of a changing climate. While 
such retraining practices are sometimes informal, 
they are crucial for ensuring that the model 
continues to reliably reflect current conditions and 
remains reliable. AI models offer a key advantage, 
they can be retrained more quickly and frequently 
than traditional models, enabling more responsive 
adaptation to evolving data. In addition, they 
can leverage transfer learning, where knowledge 
gained from one region or dataset is reused to 
improve model performance in another, often with 
limited additional training. This allows AI systems to 
generalize across basins or regions more efficiently 
than traditional hydrological models, which 
typically require extensive recalibration for each 
new setting. Such flexibility makes AI particularly 
attractive for operational use in data-scarce or 
rapidly changing environments. 

There is broad acknowledgement that for AI models 
to be utilized to their fullest capability, significant 
upskilling is required within the pre-existing staff 
within the workforce. A workforce that has the 
necessary AI skill set should be able to advise 
which computing platform(s) should be used, 
and so upskilling may solve this particular issue. 
SEPA have recently adopted Microsoft Copilot for 
general use across the organisation; a more AI-
skilled workforce will likely develop as uptake and 
experience increases. The organisation has also 
adopted a ‘cloud-first’ approach to computing 
and data management. Deeper examination of 
workforce upskilling for digital transformations 
would likely feature as a key initiative for SEPA in 
the near future.

An area of interest is the application of explainable 
AI (XAI) to flood forecasting; however, for whom the 
explanations provided was less clear.  Philosophically, 
the explanation for any event is shaped by the 
perspective, or specialism, of the observer, each 
of whom emphasizes a different causal factor. This 
idea is succinctly captured by Hanson (1958), who 
stated, “There are as many causes of x as there are 
explanations of x.” Consider, for example, a fatal car 
accident at a hazardous junction. A medic might 
attribute the death to multiple haemorrhages; a 
lawyer may view it as a case of driver negligence; a 
road planner might highlight poor road design, such 
as obscuring shrubbery as the root cause. None of 
these explanations is inherently more correct than 
the others; each is valid within its own disciplinary 
lens. The corollary is that different stakeholders 
may seek different types of explanations. In flood 
or drought forecasting, emergency planners may 
seek actionable insights on timing and severity; 

hydrologists may focus on model sensitivity to 
input variables; policymakers may be interested in 
broader socioeconomic implications.

The challenge is especially pronounced with deep 
learning models.  These systems develop highly 
opaque internal representations of the data they 
are trained on. To address this opacity, researchers 
have developed various strategies. One common 
approach is sensitivity analysis, where input 
variables are systematically varied to observe how 
changes affect the output. For instance, in a flood 
forecasting model, one might alter rainfall inputs 
to see how it influences predicted water levels. 
More advanced techniques like SHAP values or 
saliency maps are also used to gain insight into 
model decision-making. Another strategy is to use 
inherently interpretable models, such as decision 
trees or simple random forests, which allow for 
more straightforward explanation but often at the 
cost of predictive performance. While these simpler 
models may be easier to understand, they may 
not match the accuracy of deeper architectures, 
particularly when dealing with complex or high-
volume data. Finally, coupling AI models with 
hydrological models, whether that is AI2Hydro, 
Hydro2AI, TunedHydro or ModelOfModel, has also 
proven to be an effective way of increasing trust, 
as here the outputs are, at some point, bound by 
physical constraints.

Deploying ML in industrial settings also raises issues 
of human trust. Workers may fear that automation 
will render their roles obsolete. However, in many 
cases, ML models handle repetitive or low-level 
analytical tasks, freeing human experts to focus on 
higher-order strategic or interpretive work. In flood 
risk management, for example, a model might 
continuously monitor weather data (and other 
data sources) and predict flood patterns, allowing 
the domain specialists to concentrate on response 
coordination rather than real-time data crunching.

Another barrier is the reluctance of domain 
experts to trust models whose internal logic they 
cannot scrutinize. This scepticism often fades as 
the model demonstrates reliability and improves 
decision-making (forecasting) over time. As with 
any innovation, trust in AI systems tends to grow 
through iterative use, validation, and integration 
into established workflows. Transition and overlap 
periods during implementation of AI, supported 
by broad engagement approaches, will promote 
better outcomes for SEPA and other stakeholders.

Therefore, defining the required level of 
performance and accuracy for each problem, and 
asking how explainable the model needs to be and 
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for whom, will be key. Together with defining the 
spatial scale and data availability, this will not only 
guide the choice of model but also help ensure that 
the models used are both robust and trusted by 
experts and the public.

In summary, it can be seen there is considerable 
agreement between the views and interest 
expressed during the expert workshop and the 
literature review on the classes of model used  
(e.g., LSTM, CNN, etc.) and the specific application 

(e.g., AI2Hydro, Hydro2AI). However, the workshop 
did expose some interests not well represented in 
the literature such as media monitoring, digitisation 
and productivity. It should be noted that these 
are more generic interest, not confined to flood 
forecasting, and will be represented in broader 
business domains and addressed by tool vendors 
(e.g., Microsoft), making implementation of these 
types of tools at the organisation level easier, as 
reflected by the feasibility study. 

5.0 Potential roadmap and recommendations
5.1 Policy-aligned AI development 

Based on the results presented in this report, 
SEPA’s first steps should be leveraging AI to 
enhance its flood forecasting and warning and 
response capabilities – in this area its impact on 
the public and stakeholders can be immediate and 
apparent. This initiative aligns with the broader 
goals of the Scottish Government’s current AI 
strategy, which emphasizes trustworthy, ethical, 
and inclusive AI applications (Scottish Government, 
2021a), and note that a future update to the AI 
Strategy is anticipated later this year. By integrating 
AI, SEPA can improve accuracy and timeliness of 
flood predictions, thereby enhancing community 
preparedness and resilience against flood events.  
This aligns with the Scottish Government vision for 
AI in Scotland (Scottish Government, 2021a) and 
our world leadership in the use of trustworthy, 
ethical and inclusive AI, and for building resilient 
communities. For flood forecasting, a focus on 
trustworthy AI will be key to successful warn and 
inform activity, as well as robust decision-making 
support. 

The recent and timely release of the Scottish 
Government Programme for Government confirms 
investment in the Digital Programme, with funding 
already made available to the public sector. SEPA 
also focus on delivering digital transformation 
in their current Annual Operating Plans (SEPA, 
2024), seeking to drive operational efficiencies, be 
an enabler for an agile organisation, and support 
partnership collaboration. SEPA’s AI strategy 
should focus on developing and analysing large 
datasets, recognising patterns and providing real-
time predictions through complimentary or hybrid 
AI/ML systems. This approach is consistent with 
the Scottish Government’s vision of using Digital 
Systems to drive innovation and improve public 
services (Scottish Government, 2021b). The Flood 

Warning Development Framework (2022–2028) 
outlines SEPA’s commitment to adopting digital 
technologies to support its flood forecasting 
efforts, maintaining and improving existing services 
while upgrading capabilities through development 
and innovation, and delivering enhanced 
communications (SEPA, 2022).

The UK National AI Strategy underscores the 
importance of AI in increasing resilience, 
productivity, and innovation across various 
sectors (UK Government, 2021). SEPA’s AI-driven 
flood forecasting aligns with this strategy by 
contributing to the UK's goal of becoming a global 
leader in AI technology and Digital Developments 
(UK Government, 2021; Department for Digital, 
Culture, Media & Sport, 2022). The integration of 
AI in flood forecasting not only supports wider, 
overarching strategies but also positions SEPA as a 
forward-thinking agency committed to leveraging 
cutting-edge technology for public safety and 
environmental protection. The parallels to the 
UK Met Office programmes developing AI for 
forecasting (Met Office, no date) are clear, and each 
agency can learn much from the other in terms of 
AI use, and in partnership working for AI delivery. 

Beyond the UK, European partners are looking at 
digital developments that can transform activities, 
including the integration of AI/ML in catchment 
early-warning systems (e.g., the AI-based flood 
early-warning platform for small rivers and 
catchments project funded by Enterprise Europe 
Network), next-generation weather forecasting 
(e.g., DMI), flood forecasting (e.g., EO4FLOOD — 
Earth observation data for advancing flood 
forecasting by the European Space Agency) and 
more, while further afield others like the NIWA in 
New Zealand are developing AI and deep learning 
approaches to enhance flood mapping. This 

https://een.ec.europa.eu/partnering-opportunities/ai-based-flood-early-warning-platform-small-rivers-and-catchments
https://een.ec.europa.eu/partnering-opportunities/ai-based-flood-early-warning-platform-small-rivers-and-catchments
https://een.ec.europa.eu/partnering-opportunities/ai-based-flood-early-warning-platform-small-rivers-and-catchments
https://eo4flood.org/
https://niwa.co.nz/scientific-tools-data/ai-deep-learning
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initiative by SEPA that led to this DelugeAI report 
positions them at the cutting edge of exploring  
AI/ML for flood forecasting. 

5.2 Recommendations and potential 
roadmap

To enhance flood forecasting, the DelugeAI project 
recommends SEPA adopt a phased approach  
(Figure 5). Start with high-priority, low-effort 
solutions while building the infrastructure for 
advanced AI/ML integrations. This ensures 
immediate benefits and sets the stage for long-
term improvements.

This DelugeAI review, coupled with international 
expert input, suggests starting with low-risk, quick-
win AI pilots that maintain human oversight to 
build confidence and demonstrate value, aligning 
with national AI visions. The MCDA analysis 
outlines a strategic pathway for SEPA’s AI adoption 
in flood forecasting, targeting a 1–2-year horizon. 
High-scoring solutions like Warnings and Response 
and Decision Support (Table 2) offer impact and 

build organisational capability, paving the way 
for ambitious projects like Weather Prediction 
integration and Forecasting Replacement initiatives. 
This would build the community of practice 
amongst stakeholders and develop SEPA’s AI 
literacy. Developing clear, impact-focused warning 
systems that communicate risks and tailor messages 
based on the users will enhance the AI offering. 
This approach will build resilient communities and 
foster trust in AI solutions, meeting Government 
vision. In parallel, SEPA should identify what data 
is currently available and what gaps exist, and to 
establish if these gaps can be covered to allow for 
(or to not limit) future AI/ML implementations.

In parallel, SEPA should identify what data is 
currently available and what gaps exist, and to 
establish if these gaps can be covered to allow for 
(or to not limit) future AI/ML implementations. 

More complex AI/ML solutions would require 
longer 3–5-year horizons. Monitoring, particularly 
emphasized in grey literature, involves local 
communities to increase trust in AI/ML enhanced 
forecasts but requires significant investment and is 

Figure 5: DelugeAI recommended 5-year potential roadmap for using AI for flood forecasting in Scotland.
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often localised. Model calibration and integration 
of enhanced inputs are underexplored but could 
complement existing approaches. Academic 
research focuses on replacing forecasts with 
end-to-end ML models, while grey literature and 
operational settings favour hybrid models (ML + 
physics) for their combined benefits, including 
ensemble forecasting and reduced uncertainties.

Staff training and upskilling and development 
activities will form a key part of the AI and digital 
transitions. Investing in targeted training to equip 
flood forecasters with AI fundamentals, ethical best 
practices, and model interpretation skills, ensuring 
human expertise remains central. Additionally, 
establishing a multi-stakeholder group to design 
ethical frameworks and best practices, addressing 
transparency, equity, legal considerations, and 
human oversight is a solid first step for SEPA. 

As SEPA explores the use of AI/ML, it will be 
important for the organisation to consider 
developing new tools as well as adopting and 

integrating with existing ones. Several AI-driven 
flood forecasting models already exist, such as 
Google’s open-access Flood Hub, or commercial 
platforms like HydroForecast and HydroSphereAI. 
These vary in accessibility, from open access services 
to licensed products requiring formal partnerships. 
Future work should assess which external tools are 
suitable for Scotland’s flood forecasting needs and 
resources and how SEPA might engage with them, 
whether by adapting, integrating, or collaborating. 
By upskilling staff, it will also support innovation 
and making use of readily available open-source 
code (e.g., NeuralHydrology or ML4Floods python 
packages or EdgeImpulse’s river level predictor 
tool). The Feasibility Study can be repeated and/or 
adapted for future developments in AI and digital 
transformation to support this approach. SEPA 
are recommended to do so at regular intervals 
through the planning and implementation phases 
of activity, noting the fast pace and dynamic nature 
of the AI/ML landscape may see rapid and currently 
unforeseen changes in capability and opportunities. 

6.0 Conclusions

This DelugeAI project critically reviewed the current 
state of AI/ML technologies and methodologies 
in flood forecasting to inform SEPA’s future 
development plans. The report highlights that 
research to date into AI/ML for flood forecasting 
predominantly centres around two categories: 
replacement and complement. Academic literature 
focuses on replacing traditional models using 
ML, particularly with time series and spatial data 
through LSTMs and CNNs. In contrast, the grey 
literature and operational contexts favour hybrid 
approaches that combine ML with physics-based 
models, leveraging the speed and data integration 
of AI with the interpretability and constraints of 
traditional methods. Monitoring solutions, often 
involving local communities, are emphasized in grey 
literature but are typically localized and resource-
intensive, with limited clarity on replicability more 
widely.

Insights from a workshop, which brought together 
international experts spanning hydrology, 
forecasting and AI/ML, reinforce the value of 
hybrid modelling in improving flood predictions, 
especially for both routine and extreme events. 
AI/ML applications show promise in operational 

support, such as accelerating data processes and 
enhancing satellite image interpretation through 
CNNs. While global AI/ML adoption in flood 
forecasting is expanding, most efforts are aimed 
at augmenting rather than replacing traditional 
methods. Notable challenges persist, including 
the need for transparency, data quality assurance, 
and workforce training to interpret AI-generated 
insights responsibly.

Finally, a feasibility study and potential roadmap, 
produced in collaboration with SEPA and the 
Scottish Government, suggests a pragmatic path 
for adopting AI/ML for flood forecasting, starting 
with low-effort, high-impact applications like early 
warnings and response and decision support. 
These offer immediate value and help build internal 
capabilities, paving the way for more sophisticated 
implementations such as full weather prediction 
integration and eventual model replacement. The 
analysis stresses that technical prowess must align 
with deployment feasibility and strategic priorities, 
recommending phased approaches of development 
and implementation to ensure sustainable and 
effective AI/ML integration into flood forecasting in 
Scotland.

https://neuralhydrology.github.io/
https://spaceml-org.github.io/ml4floods/content/config.html
https://github.com/edgeimpulse/flood-monitoring-example-project
https://github.com/edgeimpulse/flood-monitoring-example-project
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Appendix A: Literature review 

A.1 Literature review strings

Table 3: Search strings used in WoS for each forecasting stage. The search was performed in WoS core database with no time 
constraints, i.e., spanning all years. Search date is date of results download for analysis. The first search is the main query, and 
the second search is the main query refined with the exclusion criteria. The subsequent searches were based on the combination 
of queries 1 and 2 with each stage string.

# String Results Search date Forecasting 
stage

1 TI=((flood* OR inundation) AND (forecast* OR predict* OR "predictive model*" 
OR "time*series forecast*") AND ("artificial intelligence" OR "machine learning" 
OR "deep learning" OR neural network OR "artificial neural network" OR ANN 
OR "ensemble learning" OR hybrid model OR "data-driven" OR AI OR LSTM 
OR "long short-term memory" OR comput* intelligence OR soft comput* OR 
CNN OR "convolutional network" OR "convolutional model" OR recurrent)) OR 
AB=((flood* OR inundation) NEAR/15 ("forecast*" OR "predict*" OR "predictive 
model*" OR "time*series forecast*") AND ("artificial intelligence" OR "machine 
learning" OR "deep learning" OR neural network OR "artificial neural network" 
OR ANN OR "ensemble learning" OR hybrid model OR "data-driven model" OR 
AI OR LSTM OR "long short-term memory" OR comput* intelligence OR soft 
comput* OR CNN OR "convolutional network" OR "convolutional model")) NOT 
TI=(precipitation OR rainfall OR runoff OR sediment OR "flood mapping" OR 
"inundation mapping" OR (reservoir OR dam) *flow OR reservoir operation OR 
dam operation) NOT TS=(flood susceptibility OR hazard mapping OR vulnerability)

1,995 22/05/2025 Main

2 #1 NOT TS=(oil OR carbon dioxide OR nitrogen OR nitrification OR ammonium OR 
zooplankton OR distillation OR arsenic OR methane OR chlorophyll OR column OR 
spacecraft OR "flood* attack*" OR "computer security" OR "intrusion detection" 
OR pathology OR enzyme OR sparrow OR opioid OR ship OR spectroscopy OR 
equity OR abrasion OR "heat pipe" OR aerosol OR porous OR salt marsh OR rock) 
NOT TI=(CO2 OR earthworm OR amphibian OR mosquito OR wood OR eucalyptus 
OR oxygen OR fuel cell OR supply chain OR tool wear OR scour OR dike OR 
"lightning prediction" OR "track prediction" OR fish)

1,845 22/05/2025 Main with 
exclusions

3 #2 AND 
(TI=(monitor* OR "real-time monitoring" OR "remote sensing" OR sensor OR 
WSN OR "wireless sensor network*" OR IoT OR internet of things OR "citizen 
science" OR crowdsourcing OR "social media" OR camera OR video OR CCTV OR 
drone OR UAV OR "data fusion" OR "flood detection" OR "community-based" 
OR "ungauged basin" OR "data-sparse" OR "underrepresented communit*" OR 
"participatory sensing" OR gauge OR Twitter OR radar)

AND AB=(monitor* OR "real-time monitoring" OR "remote sensing" OR sensor 
OR "WSN" OR "wireless sensor network*" OR IoT OR internet of things OR 
"citizen science" OR crowdsourcing OR "social media" OR camera OR video 
OR CCTV OR drone OR UAV OR "data fusion" OR "early warning" OR "flood 
detection" OR "community-based" OR "ungauged basin" OR "data-sparse" OR 
"underrepresented communit*" OR "participatory sensing" OR "gauge" OR 
"Twitter" OR radar))

125 23/05/2025 Monitoring

4 #2 AND TI=(recalibrat* OR calibrat* OR "parameter optim*" OR "parameter tuning" 
OR "model optim*" OR "model updat*" OR "parameter estim*" OR "offline learning" 
OR "data-driven optim*" OR "efficiency improvement" OR "model reduction" OR 
"computational saving" OR "workflow autom*" OR "automatic model*" OR  "error 
updat*" OR "error correction" OR "error analysis" OR "intelligent correction" OR 
"parameter prediction" OR "pre-training")

AND AB=(recalibrat* OR calibrat* OR "parameter optim*" OR "parameter tuning" 
OR "model optim*" OR "model updat*" OR "parameter estim*" OR "offline 
learning" OR "surrogate model" OR "hybrid model" OR "data-driven optim*" 
OR "efficiency improvement" OR "model reduction" OR "computational saving" 
OR "workflow autom*" OR "automatic model*" OR "manual calibration" OR 
"reduce effort" OR "numerical model improvement" OR "error updat*" OR 
"error correction" OR "error analysis" OR "intelligent correction" OR "parameter 
prediction" OR "pre-training")

17 22/05/2025 Model 
Calibration
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Table 3: Search strings used in WoS for each forecasting stage. The search was performed in WoS core database with no time 
constraints, i.e., spanning all years. Search date is date of results download for analysis. The first search is the main query, and 
the second search is the main query refined with the exclusion criteria. The subsequent searches were based on the combination 
of queries 1 and 2 with each stage string.

# String Results Search date Forecasting 
stage

5 #2 AND TS=((precipitation forecast* OR rainfall forecast* OR "weather forecast*" 
OR "atmospheric forecast*" OR "meteorological forecast*" OR "meteorological 
model*" OR "precipitation model*" OR WRF OR "numerical weather prediction" 
OR NWP) 
AND ("bias correction" OR "post processing" OR "post-processing" OR 
downscaling OR "ensemble post-processing" OR "statistical correction" OR 
"forecast fusion" OR "forecast integration" OR "input enhancement" OR 
"ensemble forecast*" OR coupl*))

90 23/05/2025 Enhanced 
weather 
inputs

6 #2 AND (TS=((hybrid OR "hybrid model*" OR "AI-assisted" OR "hybrid 
hydrological model*" OR "physics-informed" OR "physics-guided" OR surrogate 
OR "emulate*" OR augment* OR complement* OR aid OR combin* OR "support 
tool*" OR "coupled model*" OR "coupled system*" OR "data assimilation" OR 
"digital twin" OR "proxy model*" OR "approximat* model*" OR "approximat*" 
OR ROM OR "reduced-order model" OR ARIMA OR SARIMA) AND ("hydrological 
model*" OR "hydraulic model*" OR "hydrodynamic model*" OR "hydrodynamic 
simulation*" OR "flood* model*" OR "numerical model*" OR "numerical 
simulation" OR "physical model*" OR process-based OR " conventional hydro* 
model* " OR "statistic* model*" OR wave model* OR "storm surge forecast*" OR 
"storm surge model*" OR "sea level rise" OR "tsunami forecast*" OR MIKE* OR 
SWAT OR LISFLOOD OR TELEMAC OR Delft3D OR "HEC-RAS" OR MODFLOW OR 
CAMA-FLOOD)) OR TI=(surrogate* OR "surrogate* model*" OR physics-informed 
OR physics-guided OR hybrid))

426 23/05/2025 Complement 
forecasting

7 #2 AND (TI=(*LSTM* OR "long short-term memory" OR *GRU* OR RNN OR 
*CNN* OR convolutional OR SVM OR "support vector" OR MLP OR "multi-layer 
perceptron" OR *NARX* OR ANN OR "artificial neural network*" OR "neuro-
fuzzy" OR "fuzzy logic" OR "backpropagation" OR "BP neural network*" OR 
"back-propagation" OR transformer OR "sequence-to-sequence" OR feedforward 
OR FFNN OR "genetic progrm*" OR "genetic algorithm" OR recurrent OR "deep 
learning" OR "extreme learning" OR "data-driven" OR "AI-based forecast*" OR 
"time-series" OR "time series" OR "end-to-end model" OR "real-time calibration" 
OR "online learning" OR "online training" OR "adaptive model" OR "model-free") 
OR AB=(LSTM* OR bi*LSTM OR "long short-term memory" OR GRU* OR RNN OR 
CNN* OR convolutional OR SVM OR "support vector" OR MLP OR "multi-layer 
perceptron" OR NARX* OR ANN OR "artificial neural network*" OR "neuro-fuzzy" 
OR "fuzzy logic" OR "backpropagation" OR "back propagation neural network" OR 
"back-propagation" OR transformer OR "sequence-to-sequence" OR feedforward 
OR FFNN OR "BP neural network*" OR "back-propagation" OR recurrent OR 
"genetic progrm*" OR "genetic algorithm" OR "deep learning" OR "extreme 
learning" OR "data-driven" OR "AI-based forecast*" OR "time-series" OR "time 
series" OR "end-to-end model" OR "real-time calibration" OR "online learning" 
OR "online training" OR "adaptive model" OR "model-free")) 
NOT TI=("surrogate" OR ARIMA OR SARIMA OR "physics-informed" OR "hybrid 
hydro*" OR hybrid) 
NOT AB=("surrogate" OR ARIMA OR SARIMA OR "physics-informed" OR "hybrid 
hydro*" OR "hydro* model*")

1,093 23/05/2025 Replace 
forecasting

8 #2 TI=(impact OR consequence OR damage OR disaster OR destruction OR "flood 
loss" OR "inundation impact" OR "impact forecast*" OR "impact assessment*" 
OR "real-time impact*" OR "decision support" OR "risk-informed decision*" OR 
"decision making" OR "decision-making" OR "emergency plan*" OR "impact-
based forecast*" OR "situational awareness" OR "operational platform" OR 
(data mining AND (impact OR support)) OR "knowledge discovery" OR road OR 
electricity OR house OR building OR rail OR train OR infrastructure OR transport)

116 22/05/2025 Decision 
support

9 #2 AND TI=(warning OR "early warning system*" OR "early warning*" OR EWS OR 
"real-time alert" OR "real-time warning" OR alert OR "flood alert" OR "response 
system" OR "emergency response" OR "flood response" OR "risk warning" OR 
"automated decision" OR "automated response" OR "actionable intelligence" 
OR "trigger-based response" OR "smart warning" OR "intelligent warning" OR 
"response strategy" OR "hazard warning")

55 22/05/2025 Warnings and 
response
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Appendix B: Expert workshop

B.1 Workshop agenda and handout

Workshop: Exploring the Use of Artificial Intelligence for Flood Forecasting in Scotland 

Date: Wednesday 23 April 2025 

Workshop time: 10:00-15:15 BST 

Location: Teams (online) 

Background, status and workshop objectives 

Background 

Flooding is one of the most significant climate-
related threats facing Scotland, with risks expected 
to intensify due to a warming climate (CCRA3, 
2021). Traditional flood forecasting models, such as 
physics-based rainfall-runoff models (Environment 
Agency, 2001), have been widely used to predict 
flood events. However, these models often struggle 
to account for the complex hydrological processes 
involved in flood events and require extensive 
calibration to maintain precision. 

The rapid advancement of Artificial Intelligence 
(AI) presents a promising data-driven alternative 
to conventional floods forecasting methods. AI has 
the potential to complement existing forecasting 
capabilities by leveraging large datasets to identify 
spatial patterns, expand predictive timescales 
(towards real-time predictions), and improve 
accuracy (e.g., Liu  et al., 2025). In particular, Machine 
Learning (ML) and deep learning approaches 
(e.g., Xie et al., 2021) could significantly enhance 
SEPA’s flood forecasting capabilities in Scotland by 
integrating diverse and novel hydrometeorological 
data sources, identifying nonlinear and multivariate 
relationships, and delivering predictive insights to 
enhance response optimisation. 

AI presents a major opportunity to improve early 
warning systems, strengthen disaster preparedness, 
and support adaptive flood risk management (e.g., 
Ghaffarian et al., 2023; United Nations UNU EHS, 
2024; Oxford Insights, 2025). However, despite its 
potential, challenges remain in terms of model 
interpretability, data availability, and the seamless 
integration of AI-driven insights into existing 
forecasting frameworks. 

Current status of AI in flood forecasting 

AI is increasingly being integrated into flood fore-
casting, providing improved predictive capabilities 
and real-time monitoring. AI-driven approaches 
offer the ability to process vast amounts of 
hydrometeorological data, enhance forecasting 
accuracy, and contribute to more effective early 
warning systems. These advancements allow 
for a transition from hazard-based forecasting 
towards impact-based approaches, which provide 
better insights into how flooding events will affect 
communities and infrastructure (United Nations 
UNU EHS, 2024). While AI holds great promise in 
advancing early warning systems (EWS), several 
challenges must be addressed to ensure its 
effective and responsible use. Known challenges to 
achieving this include: 

• Data availability and quality: AI models rely on 
high-quality, extensive datasets, yet many flood-
prone regions lack sufficient historical and real-
time hydrometeorological data (United Nations 
UNU EHS, 2024). 

• Integration with existing forecasting systems: 
Traditional physics-based flood models remain 
widely used. AI must be effectively integrated 
with these models rather than replacing them, 
ensuring compatibility with current forecasting 
frameworks (Oxford Insights, 2025). 

• Resource constraints: Implementing AI-driven 
flood forecasting systems requires significant 
computational resources, infrastructure, and 
technical expertise, which may not be available 
in all regions (Liu et al., 2025). 

https://www.ukclimaterisk.org/
https://www.ukclimaterisk.org/
https://assets.publishing.service.gov.uk/media/5
https://assets.publishing.service.gov.uk/media/5
https://www.sciencedirect.com/science/article/abs/pii/S2212420924008720
 https://www.sciencedirect.com/science/article/abs/pii/S0022169421010933
https://www.sciencedirect.com/science/article/pii/S2212420923006039
https://unu.edu/ehs/series/5-ways-ai-can-strengthen-early-warning-systems
https://unu.edu/ehs/series/5-ways-ai-can-strengthen-early-warning-systems
https://oxfordinsights.com/insights/ai-for-climate-change-managing-floods-using-ai-early-warning-systems/
https://unu.edu/ehs/series/5-ways-ai-can-strengthen-early-warning-systems
https://unu.edu/ehs/series/5-ways-ai-can-strengthen-early-warning-systems
https://unu.edu/ehs/series/5-ways-ai-can-strengthen-early-warning-systems
https://unu.edu/ehs/series/5-ways-ai-can-strengthen-early-warning-systems
https://oxfordinsights.com/insights/ai-for-climate-change-managing-floods-using-ai-early-warning-systems/
 https://www.sciencedirect.com/science/article/abs/pii/S2212420924008720
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Workshop objectives 

The Scottish Environment Protection Agency (SEPA) 
is the national authority for flood forecasting in 
Scotland, playing a critical role in mitigating flood 
risks, protecting communities and enhancing 
preparedness for flood events. SEPA seeks 
to explore how Al and ML can enhance flood 
forecasting in Scotland.  

This workshop, led by Dr Chris White from the 
University of Strathclyde as part of the ‘DelugeAI: 
A review of the emerging opportunities of using 
artificial intelligence for flood forecasting in 
Scotland’ (funded by CREW, Scotland’s Centre of 
Expertise for Water; CSPF2025_01), will explore the 
key questions related to AI-driven flood forecasting 
as an alternative to traditional rainfall-runoff 
modelling identifying both opportunities and 
challenges in its adoption.  

The workshop aims to: 

• Demonstrate and discuss findings from  
AI-driven flood forecasting research, gathering 
expert insights on its relevance and practical 
applications. 

• Identify current applications of AI in flood fore- 
casting within existing forecasting frameworks. 

• Explore the challenges and opportunities of AI-
based flood forecasting, distinguishing realistic 
applications from theoretical possibilities. 

• Provide recommendations for integration AI 
into Scotland’s flood forecasting systems. 

The workshop will include a presentation of current 
AI applications (both in flood forecasting and more 
general) and facilitate a broad discussion with 
participants from across disciplines. The goal is to 
identify where AI can be realistically integrated 
into flood forecasting in Scotland, distinguish 
feasible applications from more aspirational ideas, 
and establish a shared vision for AI’s role in flood 
forecasting over the next 3-5 years. 

Expert workshop agenda

Workshop: Wednesday 23 April 2025

Part 1: Setting the scene

10:00 – 10:20 Welcome, introductions & workshop objectives Chris White, University of Strathclyde 
and Michael Cranston, SEPA

10:20 – 10:50 Keynote: From Continental Models to Local 
Insights: Advancing Hydrological Prediction in 
Europe with AI 

Ilias Pechlivanidis, SMHI (Sweden) 

10:50 – 11:00 Break   

Part 2: Understanding the use of AI for flood forecasting

11:00 – 11:30 Expert insights on AI applications –  
Lightning talks: Michael Butts, Massimiliano 
Zappa and Jonathan Frame 

Robert Atkinson, University of 
Strathclyde 

11:30 – 11:50 Initial findings from a systematic review of 
flood forecasting and AI 

Vicky Marti, University of Strathclyde 

11:50 – 12:30 Open discussion: Expert insights on AI 
applications

Robert Atkinson, University of 
Strathclyde 

12:30 – 13:45 Break  

Part 3: Looking forward

13:45 – 14:15 Expert insights on the future of AI for flood 
forecasting – Lightning talks: Maria Luisa 
Taccari, Steven Ramsdale and Jan Verkade 

Doug Bertram, University of Strathclyde 

14:15 – 14:45 Open discussion: Identifying realistic 
applications of AI in flood forecasting 

Doug Bertram, University of Strathclyde 

14:45 – 15:00 Next steps: Building a collaborative output Chris White, University of Strathclyde 

15:00 – 15:15 Closing remarks Chris White, University of Strathclyde 

15:15   Workshop close 

https://www.crew.ac.uk/project/exploring-use-artificial-intelligence-flood-forecasting-scotland
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Invited speakers 

This section highlights our invited speakers, their areas of expertise, and links to their professional profiles.

Table 4: List of invited speakers at the expert workshop.

Ilias Pechlivanidis Lead Scientist at SMHI and Chair of the HEPEX initiative – Profile  

Michael Butts Chief Consultant for Flooding at DMI, Adjunct Professor of Water Resources Engineering (TVRL), Lund 
University – Profile 

Massimiliano Zappa Senior Scientist at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) – Profile 

Jonathan Frame Assistant Professor of Machine Learning and Artificial Intelligence in Geological Sciences at the University 
of Alabam – Profile 

Maria Luisa Taccari Scientist for Data-driven Hydrological Forecasting at the European Centre for Medium-Range Weather 
Forecasts (ECMWF) – Profile 

Steven Ramsdale Chief meteorologist at the UK Met Office – Profile 

Jan Verkade Senior Hydrometeorologist at Deltares – Profile 

Table 5: List of expert workshop participants and their organisation in alphabetical (surname) order.

Name Affiliation

Phillip Aarestrup Technical University of Denmark

Robert Atkinson University of Strathclyde

Douglas Bertram University of Strathclyde

Michael Brian Butts Danish Meteorological Institute

Rebekah Burman CREW

Annie Chang MeteoSwiss

Deidre Cleland National Institute of Water and Atmospheric Research

Steven Cole UK Centre for Ecology & Hydrology

Amy Cooper CREW

Michael Cranston Scottish Environment Protection Agency

Richard Crowder Jacobs

Robert Cowling Environment Agency

Anthony Duke UK Met Office

Matthew Fry UK Centre for Ecology & Hydrology

Jonathan Frame University of Alabama

Andrew How Natural Resources Wales

Victoria Martí Barclay University of Strathclyde

Simon Moulds University of Edinburgh

Kamila Nieradzinska University of Strathclyde

Adam Parkes Jacobs

Ilias Pechlivanidis Swedish Meteorological and Hydrological Institute

Charles Pilling UK Met Office

Malcolm Price The Data Lab

Marc Roper University of Strathclyde

Jenny Roberts JBM Consulting

Steven Ramsdale Met Office

Neil Ryan Environment Agency

Jonathan Sewell Scottish Government

Rachel Skinner Natural Resources Wales

Bryony Smith Jacobs

Saleh Seyedzadeh The Data Lab

B.2 List of expert workshop participants

https://www.pechlivanidis-hydro.com/
https://www.researchgate.net/profile/Michael-Butts-2
https://www.wsl.ch/en/staff/zappa/
https://geo.ua.edu/people/jonathan-frame/
https://www.ecmwf.int/en/about/who-we-are/staff-profiles/maria-luisa-taccari
https://www.linkedin.com/in/steve-ramsdale-70a1b5357/
https://www.deltares.nl/en/expertise/our-people/jan-verkade
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Table 5: List of expert workshop participants and their organisation in alphabetical (surname) order.

Name Affiliation

Maria Luisa Taccari European Centre for Medium-Range Weather Forecasts

Muhammad Usman University of Strathclyde

Lucile Verrot Scottish Environment Protection Agency

Christopher White University of Strathclyde

Richard Weston Natural Resources Wales

Jan Verkade Deltares

Massimiliano Zappa Swiss Federal Institute for Forest, Snow & Landscape Research

B.3 Identified development areas, aligned to the road map horizons

During the expert workshop, several suggested areas or lines of development were identified across the one, 
three, and five-year development horizons, which are detailed here from Table 6 to Table 9.

Table 6: One-year horizon.

Application/Suggestion/Comment Relevant Phase Identified

Improved flood model inputs (e.g., snow, rain, temperature, soil moisture) 1+ years. Monitoring

Using LSTM to post-process (bias correction) the output from physics-based models. Complement existing flood forecasting 
approaches

Formal model intercomparison and benchmark datasets to quantify potential benefits 
from AI.

Complement existing flood forecasting 
approaches

Use of AI / ML to help reduce model run times especially as we look towards more 
of a probabilistic approach which will increase run times and processing power 
requirements. Can also hopefully improve model outputs within the bounds of more 
frequent floods where we have data.

Complement existing flood forecasting 
approaches

Data assimilation, forecasting   Potential to improve current flood model outputs using 
AI/ML assimilation and updating approaches. 1 year plus.

Complement existing flood forecasting 
approaches

Use AI for any kind of post-processing. Complement existing flood forecasting 
approaches

Use of multi model ensemble to capture the skill of different ML algorithms, but the 
trade off is how many models should we run while keeping the system computationally 
reasonable.

Complement existing flood forecasting 
approaches

Can AI be used to reduce uncertainty in near time weather forecasting. Complement existing flood forecasting 
approaches

Inclusion of LSTM rainfall runoff models alongside existing legacy models. Complement existing flood forecasting 
approaches

Emulating physics-based models, which are too slow to run in real-time. Replacing flood forecasting with AI/ML

Having decisions as to why you have or haven't issued a warning from a forecast being 
fed directly back into the system rather than through a human paper trail.  Support the 
development of junior forecasters and comprehensive log of actions.

Decision Support

Scraping real-time data from social media, news outlets and incoming phone calls, 
summarised by AI and presented to operational staff during events to validate in real-
time and inform.

Decision Support

Local decision-making. Can we learn when road barriers should be closed by learning 
from past decisions.

Decision Support

Using AI as direct decision support - e.g., Summarising forecasts, required procedures 
and/or asking approval from the human interaction to proceed to next stage (e.g., 
issue warning).

Decision Support

I see an increasing use of AI to flag areas that we need to prioritise on. Warnings from 
AI to drive more attention/activity.

Warnings and response in real-time:

Impact Forecasting   Potential to use this quickly using existing model/mapping 
datasets.  1 year +.

Warnings and response in real-time:

Use AI to help draft our internal documents, e.g., project plans. Other

Validation of flood maps using xAi to compare multiple sources e.g., EO-derived flood 
outlines or geo-referenced social media posts.

Other
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Table 7: Three-year horizon.

Application/Suggestion/Comment Relevant Phase Identified

Physical processes. Could be used to model poorly modelled/understood processes 
(where appropriate data available). E.g., reservoirs.

Model calibration

Some of the modelling concepts (e.g., LSTM) should be near-ready for implementation. Complement existing flood forecasting 
approaches

Feedback to prioritise model development. Identify issues in current process models to 
prioritise developments. 1 year plus.

Complement existing flood forecasting 
approaches

As confidence in AI solutions grow so will the confidence in the super complex 
processes of multi input challenges. 

Complement existing flood forecasting 
approaches

Hybrid approaches (conceptual/physical/ML/AI) – particularly for small and ungauged 
catchments and river flow/level forecasts. 3 years?  Benefits – improved forecasts, still 
some physical understanding (e.g., snow) Issues/Risks – ML only models for ungauged 
area or models encountering processes not in the "training" dataset.

Complement existing flood forecasting 
approaches

AI can surely efficiently support in impact-based decisions to prioritize action Decision Support

Table 8: Five-year horizon.

Application/Suggestion/Comment Relevant Phase Identified

Real time inundation/impact modelling to inform forecasting/warning service. Replacing flood forecasting with AI/ML

I'm not convinced we will replace physical models so much as shift our trust to AI and 
significantly reduce reliance on trad models.

Replacing flood forecasting with AI/ML

Towards foundation models that design/perform analyses that respond to natural 
language queries (e.g., will it flood in the next five days?).

Warnings and response in real-time:

Forecasting/warning service that uses impact/inundation mapping to deliver variable 
warning areas based on forecast AI/ML used to reduce model run times.

Warnings and response in real-time:

Table 9: Other aspects to consider.

Application/Suggestion/Comment Relevant Phase Identified

Please avoid any try to replace monitoring with AI. Just use AI for support in errors 
detection and gap filling.

Monitoring

Using AI to optimise data collection by prioritising locations of new hydrometric 
sensors; also digitisation of paper records to extend data record and therefore amount 
of training data.

Monitoring

Impact of data quality.  Is this amplified by AI?  Should some AI 'funding' be diverted to 
data verification?

Monitoring

Use of AI to process alternative monitoring data - e.g., satellite, drone, camera data to 
capture hydrometric information.

Monitoring

Explore levels of predictability at various scales to ensure valuable use of effort. Complement existing flood forecasting 
approaches

Platforms for transparent development and assessment of AI (and conceptual) 
forecasting models. Opportunities – define objective  (e.g., flood extent, flood levels), 
use emerging data/compute platforms (e.g., FDRI, https://fdri.org.uk/), reproducible, 
benchmarking standards/initiatives (e.g., flood hydrology roadmap). Issues – require 
compute and data platforms, with appropriate security (e.g., Trusted Research 
Environments), access to data (e.g., high res satellite). 3-5 years.

Complement existing flood forecasting 
approaches

Research AI decision support tools in other sectors - there will be several sectors who 
have this operational already which could apply to all the peripheral forecasting needs 
aside from actual FF and weather models.

Decision Support

Something very basic to consider before setting up an AI system:  what infrastructure 
should/can an agency run its AI model operationally on, e.g., access to GPU?

Other

Need to continue traditional modelling/research/understanding to ensure accurate 
data exists to train future models. If we end solely AI we lose our understanding.

Other

Future workforce skills needed and how to upskill or complement existing staff. Other

Base training in data science/AI. Other

Are we killing the world trying to save it with AI?  Is there any way of making AI for FF 
less impactful on the env?

Other
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Appendix C: Feasibility study

C.1 AI Solution definition and scope

Seven AI solutions (Table 10) were defined based on SEPA's flood forecasting framework, spanning the 
complete operational spectrum from initial monitoring through to warning response:

Table 10: Solutions identified for feasibility analysis for each stage of the flood forecasting process.

Solution Primary Function

Monitoring Small or ungauged catchments – river flow/level forecasts where not captured elsewhere

Model Calibration Maintaining and improving accuracy of existing SEPA model assets through automated recalibration

Weather Prediction Improved flood model inputs – enhanced representation of rainfall, snow, and temperature 
forecasts

Forecasting (Complement) Hybrid modelling – combining AI with physics-based models to support routine forecasting

Forecasting (Replace) Full model replacement with ML

Decision Support Reducing bias in decision-making for more consistent and informed future responses

Warnings and Response Warning communication optimization

C.2 Feasibility study process

Step-by-step MCDA process implementation:

1. Solution identification: seven AI solutions 
were identified from SEPA's flood forecasting 
framework, covering the complete spectrum 
from monitoring to warning response.

2. Stakeholder engagement: key stakeholders 
were consulted to define evaluation criteria 
and assign category relative importance, i.e., 
weightings.

3. Criteria development: five main evaluation 
categories were established with detailed sub-
criteria definitions.

4. Weighting assignment: percentage weights 
were allocated to each category based on 
strategic importance to SEPA's objectives.

5. Scoring matrix development: a standardised 
1-5 scoring scale was developed with clear 
performance descriptors.

6. Expert evaluation: each AI solution was 
independently scored against all criteria by 
subject matter experts.

7. Score validation: scores were reviewed and 
validated through peer review and stakeholder 
feedback.

8. Weighted calculation: overall scores were 
calculated using the weighted sum method.

C.3 Evaluation criteria development

Five primary evaluation categories were 
established through stakeholder consultation, with 
each category containing multiple sub-criteria to 
ensure comprehensive assessment. The criteria 
development process involved:

1. Literature review: best practices in AI implement-
ation for flood forecasting were reviewed.

2. Stakeholder workshops: technical and manage-
ment stakeholders identified key success factors.

3. Criteria validation: draft criteria were tested 
against known AI implementations.

4. Final refinement: criteria were refined based on 
applicability and measurability.

C.4 Weight assignment process

Category weights were assigned through a 
structured stakeholder consultation process:

1. Initial weight proposal: draft weights were 
proposed based on SEPA's strategic priorities.

2. Stakeholder review: technical and management 
stakeholders reviewed and provided feedback 
on proposed weights.

3. Consensus building: final weights were agreed 
through facilitated discussion sessions.

4. Validation: weights were tested against 
hypothetical scenarios to ensure logical outcomes.
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Following consensus building and validation, final weightings are indicated in Table 11 below.

Table 11: Category weightings, sub-criteria, and rationale used in the MCDA process to evaluate AI solutions for flood forecasting. 
The table outlines the five evaluation categories, their respective percentage weights, detailed sub-criteria, and the rationale for 
each weighting based on strategic alignment with SEPA’s objectives.

Category Weight (%) Sub-criteria Weight rationale

Technical 30 Technology, accuracy, scalability, 
transparency, integration capability, 
real-time performance

Assigned highest weight (30%) due 
to critical importance of technical 
performance in flood forecasting 
accuracy and reliability

Improving Flood 
Resilience

25 Creating flood resilient communities, 
supporting good practice in flood-
resilient placemaking, supporting multi-
partner flood resilience delivery

Second highest weight (25%) reflecting 
core mission alignment with SEPA's 
flood resilience objectives and 
community protection goals

Cost/Resource 20 Infrastructure, development, staff 
training, resource efficiency, data 
availability, licensing & ongoing 
maintenance

Significant weight (20%) recognizing 
budget constraints and resource 
optimization requirements in public 
sector context

Deployment 15 Near-term wins build credibility for 
longer-term projects

Moderate weight (15%) emphasizing 
achievable implementation and building 
organizational confidence in AI solutions

Sustainability & 
Ethics

10 Environmental sustainability, energy 
efficiency, and alignment with Scottish 
Government AI policies

Lowest weight (10%) but essential 
for alignment with environmental 
stewardship and ethical AI deployment 
principles

C.5 Scoring scale development and 
application 

The scoring process was conducted through the 
following systematic approach:

1. Evaluator selection: Subject matter experts 
were selected for each category based on 
relevant expertise.

2. Independent evaluation: Each evaluator 
independently scored all solutions against their 
assigned criteria.

3. Calibration session: Initial scores were reviewed 
in calibration sessions to ensure consistency.

4. Score revision: Scores were revised based on 
feedback from SEPA.

5. Final validation: Final scores were validated 
through peer review process.

C.6 Mathematical calculation 
methodology

The overall scores were calculated using the 
weighted sum method, implemented through the 
following mathematical process:

Overall score =  
 Σ (category score x category weight)  
 
Where:
• Category score = individual score for each of 

the five categories (1-5 scale), with 1 being very 
low feasibility and 5 being very high feasibility

• Category weight = percentage weight assigned 
to each category

•	 Σ = summation across all five categories

Example calculation (warnings and response 
solution):

• Technical score: 2×0.30=0.60

• Deployment score: 4×0.15=0.60

• Flood resilience score: 4×0.25=1.00

• Cost/Resource score: 4×0.20=0.80

• Sustainability score: 4×0.10=0.40

• Overall score: 
0.60+0.60+1.00+0.80+0.40=3.40
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C.7 MCDA results

The aggregated weighted scores revealed a clear 
hierarchy of implementation priorities, as shown 
in Figure 6. High-priority solutions (scoring above 
3.0) emerged as those offering the optimal balance 
of technical capability, practical feasibility, and 
strategic value for SEPA's operational context.

C.8 Results and categorisation 

Based on these results, the seven AI solutions were 
categorized into distinct priority groups that reflect 
their readiness for implementation and potential 
impact. The analysis identified five high-priority 
solutions that scored above the 3.0 threshold, 
each offering unique advantages for immediate 
deployment:

• Warnings and response (3.4) emerged as the 
highest-scoring solution, achieving exceptional 
performance in deployment feasibility, cost-
resource efficiency, and sustainability. While 
its technical performance was moderate, 
the solution's strength lay in practical 
implementation and operational efficiency.

• Integrating weather predictions (3.3) 
demonstrated strong technical capabilities and 
excellent flood resilience contributions through 
the adoption of improved ML inputs such as 
snow, rain and temperature data. The moderate 
deployment score reflected the complexity 
of integrating advanced weather prediction 
models, while reasonable cost considerations 
made this solution attractive for enhancing the 
foundational meteorological inputs essential 
for accurate flood forecasting.

• Decision support (3.2) excelled in cost-
effectiveness and deployment feasibility, 
making it highly attractive for immediate 
implementation. This AI-driven system 
leveraged historical data to reduce decision-
making bias, promising more consistent and 

informed future responses despite moderate 
technical performance scores.

• Forecasting replacement (3.1) represented the 
most ambitious technological advancement, 
demonstrating strong technical capabilities 
and good flood resilience potential through 
comprehensive replacement of physical models 
with ML. However, significant deployment 
challenges and cost concerns reflected the 
substantial commitment required for 
fundamental system transformation.

• Model calibration (3.1) focused on using ML 
to automatically recalibrate physically based 
flood forecasting models. Strong deployment 
characteristics were offset by technical 
limitations and cost concerns, positioning this 
as an incremental improvement rather than 
transformational change.

Two solutions were classified as medium priority, 
falling below the threshold:

• Monitoring (2.95) addressed the enhancement 
of monitoring for small or ungauged 
catchments, showing good flood resilience 
benefits but suffering from poor deployment 
scores and moderate technical performance. 
The solution required significant infrastructure 
development but provided essential data 
foundation for other AI applications.

• Forecasting complement (2.85) utilized a hybrid 
modelling approach with strong technical 
performance and good flood resilience 
potential but faced significant deployment 
challenges and cost considerations that limited 
immediate viability.

The MCDA analysis highlights a phased, strategic 
approach to AI adoption in flood forecasting, 
prioritising high-impact, easily deployable 
solutions that balance innovation with feasibility — 
laying the groundwork for sustainable, long-term 
transformation.

Figure 6: Overall Multi-Criteria Decision Analysis (MCDA) scores for the evaluated solutions, highlighting performance across key 
categories. Warnings & Response achieved the highest score (3.4), while Forecasting (Complement) scored the lowest (2.85).



Centre of Expertise for Waters

James Hutton Institute
Craigiebuckler

Aberdeen AB15 8QH
Scotland UK

www.crew.ac.uk

CREW publications can be accessed here:
www.crew.ac.uk/publications

CREW is a partnership between the James Hutton Institute

and all Scottish Higher Education Institutes and Research Institutes.  

The Centre is funded by the Scottish Government.

CREW-scotland@crew_waters @crew-waters


