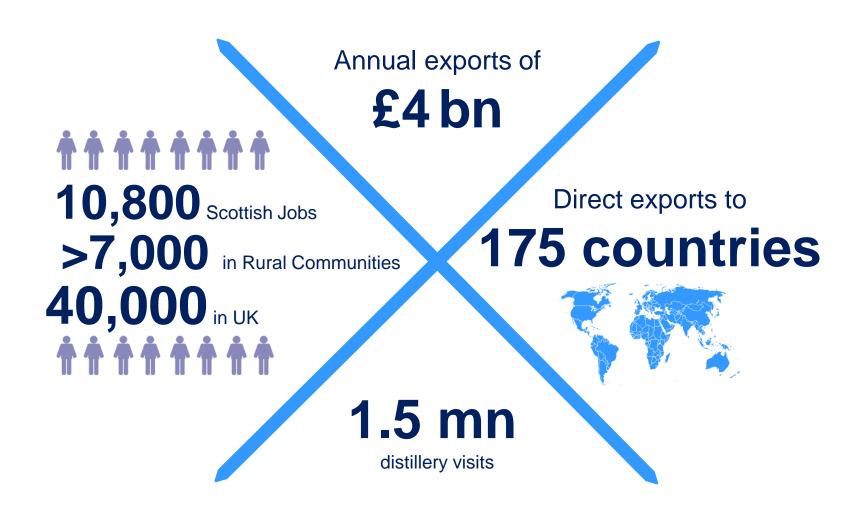
Managing production in water dependent industries: a Scotch Whisky example

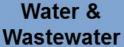

Ronald Daalmans

World Water Day Resilience to Drought and Low Flow Conditions in Scotland Edinburgh, 22nd March 2019

The Scotch Whisky Industry

Scotch Whisky Operations

- 117 malt distilleries, 250 mola (14 CBL)
- 7 grain distilleries, 300 mola (1 CBL)
- Warehouses (20m+ casks)
- 15 major bottling plants (2 CBL)
- Maltings, offices, research/technical centres
- By-products/dark grains processing
- Energy facilities
- Long-term business


Environmental Sustainability Strategy

15 LIFE ON LAND

Byproducts & Waste

Energy & Carbon

Distillery Water Use

Process Water

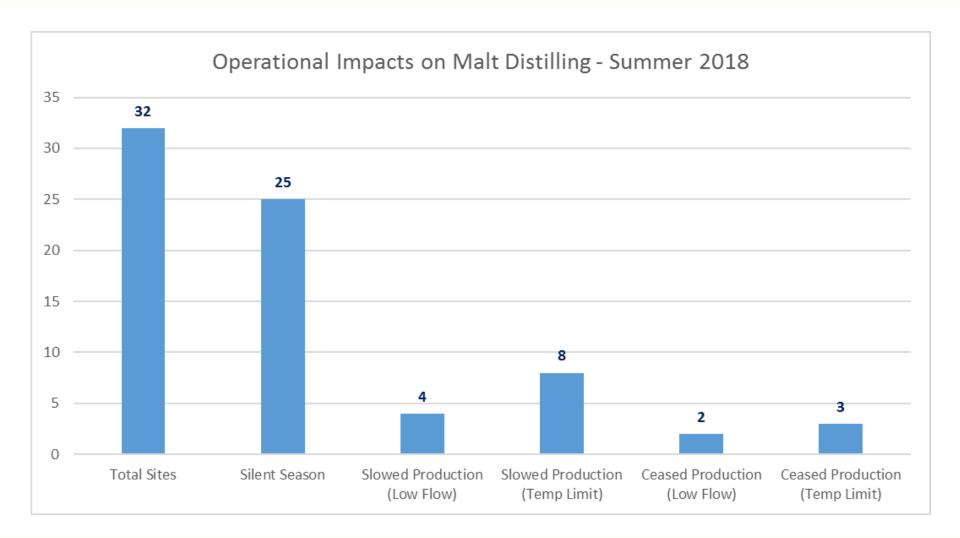
- Mainly springs, some borehole, few surface
- High quality
- Steady temperature
- Fixed consumption with over flows

Cooling Water

- Generally from rivers & burns
- Lades, cooling ponds, intake pipes, pumped
- Once-through vs Cooling Towers
- Range of return distances (metres to miles)
- Fixed, variable or on-demand

Location, location, location

- Remote upland tributaries
- Major rivers (e.g. Spey)
- Lowland agricultural
- Single site to multi-user cascade


Scale of Water Use

Aberlour Distillery (Lour Burn)

- Water Demand: Process = 0.006 m³/s, Cooling = 0.043 m³/s
- Available Flow: 0.021 m³/s
- Low Flow @ Q98: 0.12 m³/s
- Low Flow @ Q99.9: 0.11 m³/s

Sector Impacts

Planning - Risk Assessment

Water Resilience Assessment

Site	Water Use		Regulatory Risk			Water Efficiency		Water Availability			Expansion	Temp
	Туре	Source	RBMP	Q95	Design	Reasonable	Planned	Current HR	Future HR	Return	Sources	Return
	Process	Springs										
	Cooling	River										
	Process	Springs										
	Cooling	River										
	Process	Springs										
	Cooling	River										
	Process	River										
	Process	Springs										
	Cooling	River										
	Cooling	River										
	Process	Springs										
	Process	Springs										
	Cooling	River										

Planning - Responsible Consumption (Process Water)

In vs Out

- All material flows containing water, plus external factors (e.g. rainfall) & meter error
- Investigate significant differences

Actual vs Theoretical

- Design basis for water use per activity
- Investigate omissions & cross-overs

Benchmarking

- Context Important
- Whisky Average = 27m³/kl
- CBL Average = 21m³/kl
- CBL Best = 13m³/kl
- Sector reports
- Identify local buddies

Distillery	Priority	Site Balance	Process Theoretical		
GA	Υ	In = Out	Act > The		
GK-SI	N	In = Out	Act > The		
BV	Y	In < Out	Act > The		
LM	Υ	In > Out	Act > The		
GB	Υ	In < Out	Act > The		
GT	Y	In < Out	Act = The		
AL	Y	In < Out	Act > The		
TM	Y	In < Out	Act < The		
TGL	N	In < Out	Act > The		
MD	N	In > Out	Act > The		
AAB	N	In > Out	Act < The		
SP DM	N	In = Out	Act > The		

Planning - Data & Knowldge

Temperature Network

- 9 sites, 32 units
- Source variability
- Air Water relationships
- Link with existing networks / models
- Potential for risk assessment or warning system

Research Partnership (PhD)

- The Glenlivet water gathering lands
- Nature based solutions
- Water & snow retention
- S-T water storage & infiltration
- Change base flow
- Limit maximum water temperatures
- Site selection tool
- Value of Ecosystem Services

Issues for the Future

- Temperature Profiles & Distribution Datasets
- Vulnerability assessment of spring supplies
- Legacy infrastructure (CAR & Lades)
- Update of Future Flows Model
- Simple water scarcity planning framework
- Mitigation measures (payment for public goods)
- Strategic development planning information

Dr. Ronald Daalmans Environmental Sustainability Chivas Brothers Ltd ronald.daalmans@pernod-ricard.com

