

Innovations in aquatic monitoring

Published by CREW – Scotland's Centre of Expertise for Waters. CREW connects research and policy, delivering objective and robust research and expert opinion to support the development and implementation of water policy in Scotland. CREW is a partnership between the James Hutton Institute and all Scottish Higher Education Institutes supported by MASTS. The Centre is funded by the Scottish Government.

This document was produced by:

Aitkenhead, M. Donnelly, D. and Coull, M. James Hutton Institute Craigiebuckler Aberdeen AB15 8QH

Please reference this report as follows: Aitkenhead, M. Donnelly, D. and Coull, M (2013) Innovations in aquatic monitoring. CREW project number CD2013_04 Available online at: crew.ac.uk/publications

Dissemination status: Unrestricted

All rights reserved. No part of this publication may be reproduced, modified or stored in a retrieval system without the prior written permission of CREW management. While every effort is made to ensure that the information given here is accurate, no legal responsibility is accepted for any errors, omissions or misleading statements. All statements, views and opinions expressed in this paper are attributable to the author(s) who contribute to the activities of CREW and do not necessarily represent those of the host institutions or funders.

INTE	RODUCTION	1
TECH	HNOLOGICAL CATEGORIES	1
EXA	MPLES	3
DISC	CUSSION1	.7
CON	VCLUSIONS	1
REFE	ERENCES	1
	TEC 2.1 2.2 EXA DISC COM	

1. INTRODUCTION

This report is in response to a request from SEPA via CREW to highlight examples of monitoring where personal monitors have the potential to be, or currently are, being used.

In recent years, the use of mobile phones and tablets for personal communication has increased dramatically. The infrastructure and technology lying behind these ubiquitous devices has expanded in scope and sophistication. It is now possible to integrate sensor technology directly into off-the-shelf systems and either acquire new readings or upload them directly to cloud-based storage. Given the resources that are available, and the number of technical challenges that have been overcome in order to allow this, it would seem like a natural progression to begin using mobile communication technology for field-based environmental monitoring. In this report, we review existing technology for acquiring, processing and reporting on environmental data in the field. The objective is to demonstrate whether or not it is possible to use off-the-shelf technology for water monitoring.

Many examples of existing technology in this area already exist. Lane et al. (2010) discuss the potential for using mobile phones for environmental sensing, although they focussed on sensors embedded into the mobile phone rather than augmentation with additional devices. Work at the James Hutton Institute on linking models to mobile phone apps with image analysis techniques has led to rapid field monitoring for soil (Aitkenhead, 2013). Here we identify and review a number of examples over a wide range of technological sophistication and level of user/device interaction, in order to provide a summary (with notable examples identified) of what is currently available.

2. TECHNOLOGICAL CATEGORIES

There are many different solutions available within the field of environmental monitoring, even if the focus is on water alone. Grouping the different technological and computing developments into specific categories allows us to more easily compare these different solutions, and allows the reader to focus on the category that is of greatest interest to them. There are several possible frameworks of categorisation of mobile environmental monitoring solutions. We have chosen to group them in two ways: by technological sophistication (which is closely related to cost) and by user/device interaction.

2.1 Technological sophistication

- Snappy apps purely app-based, with no additional technology required and little or no
 interpretation of the information obtained. Commonly used to record imagery of events or specific
 features within the landscape, sometimes with the option to provide additional data from the user's
 visual interpretation (e.g. water quality, presence of a particular species).
- Smart apps again, purely app-based but with more sophisticated interpretation of information obtained by the user. Image analysis and the use of additional knowledge available from knowing the user's geographical location are used to drive models or to provide information directly to the user from digital maps.
- Plug & play off-the-shelf sensor devices that can be plugged into a mobile phone or tablet and used to augment the sensor technology of the device. These are ready to use and provide specific sensor readings.

• Clever kits – either for purchase or recently developed and for testing, this type of technology requires construction and a high degree of understanding from the user. Sensor devices of this kind are usually customisable and are designed to be used by researchers or professionals.

2.2 User/device interaction

- Crowd source here, the user is not required to provide any interpretation of the results, but simply acts as a recorder of information (usually imagery, but sometimes audio recordings). The information is transmitted to a central location where it can be subjected to further interpretation by experts.
- Personal use the user is provided with readings, usually interpreted automatically to make them more useful, about their environment. There is no expertise required in handling the equipment or interpreting the information obtained, but some experience in using the equipment properly might be necessary.
- Decision support information is taken from the user, either in the form of imagery for interpretation or numerical values (or both). This information is integrated with information derived from knowledge of the user's position within the landscape, and is used to provide information that is of specific interest for land management etc. The outputs from this type of system tend to be less 'interpreted' than they would be for a member of the public.
- Tricorder the user of this technology is a specialist, often a scientist or someone looking to answer
 a specific question that requires sophisticated monitoring. Use of this technology requires an
 understanding of the system being monitored, training in the use of the technology and the ability to
 interpret sophisticated monitor readings.

The following table shows how the above categorisation works, and lists the examples found which fall into each category, with links to a discussion of each example.

	Snappy apps	Smart apps	Plug & play	Clever kits
Crowd source	What's invasive	Water Quality		
	NatureWatch	<u>Reporter</u>		
Personal use	PEIR		<u>Lapka</u>	
			<u>Ghana air quality</u>	
			<u>Thermodo</u>	
			<u>Luxi</u>	
			<u>Alcohoot</u>	
Decision support	<u>SoilWeb</u>	Soil Test Pro		Platforma SINC
	<u>SoilMapp</u>	PrecisionEarth		<u>MoboSens</u>
	<u>mySoil</u>	Aphid Speed		
		<u>Scout</u>		
		<u>SIFSS</u>		
		<u>SOCIT</u>		
		AWQS		
Tricorder		<u>Optimizer</u>	H2020 tech	Sensordrone
		<u>EMAP</u>	<u>transfer</u>	<u>WiMoto</u>
		SEPA/Geofield	Tesla Microscope	smarTROLL
			<u>Proscope</u>	

Table 1. Categorisation of mobile environmental	I monitoring solutions, with examples
---	---------------------------------------

3. EXAMPLES

The tables below list examples that have been found of apps, mobile phone-related equipment and associated systems for environmental monitoring. The relevance of these examples varies, and where necessary we have identified the concepts or ideas that are relevant to water monitoring and that could be extracted for future systems. In each case, we have identified the design function, the potential of the system for water monitoring, the level of technological sophistication, the level and type of user/device interaction, any limitations on the use of the system in question and its suitability (i.e. the level to which it achieves the stated purpose).

Name	What's Invasive
Website	http://whatsinvasive.com/
Designed function	Crowd-sourcing of invasive plant species.
Potential for water monitoring	Direct application of this app could achieve monitoring of rivers and water bodies for invasive species, such as Japanese Knotweed, often spread along river banks. Indirectly, this app and others similar to it can provide a template for capturing user observations of water body quality or features of interest (e.g. pollution, dumping).
Technological sophistication	The app is relatively simple and acts more as a mechanism for capturing user observations than anything else. Photographs can be geotagged automatically, as can observations, allowing databases to be populated with user observations and images. However, there is no automated interpretation of the information sent, neither is there much in the way of moderation – the quality or relevance of an observation varies with the user.
User/device interaction	This app can be used with the minimum of training or experience, and requires no sophisticated technical knowledge on the part of the user. However, they are expected to be able to identify the species or other feature of interest that they are describing.
Limitations on use	This is very much a 'what goes in is what comes out' app – all information of use is entered by the users, whose level of expertise in the subject area may vary. It is difficult therefore to produce statistical or numerical evaluations of the topic of interest.
Suitability assessment	Potentially useful for capturing the spatial location and distribution of qualitative observations. Not capable of capturing quantitative observations unless used in parallel with monitoring equipment. In order to make use of this app for monitoring water quality, it would have to be developed slightly differently to allow different observations to be entered; it is therefore only suitable for monitoring of invasive species in or near water bodies.

Name	PEIR
Website	http://www.cs.cornell.edu/~destrin/resources/conferences/2009-jun-Mun-Sheddy-
	PEIR.pdf
Designed	An app developed at UCLA and demonstrated in 2009, which calculated exposure to
function	particulate matter in cities based on positional information and mode of
	transportation.
Potential for	None directly, but its application for assessing user risk exposure to airborne pollutants
water	could be easily transferred to water-borne pollutant exposure assessment.
monitoring	

	centre of expension waters
Technological	This app records the user's position and movement automatically, and integrates this
sophistication	information with existing datasets. The results are interpreted for the user and
	presented in an understandable form.
User/device	Relatively simple user interaction is involved – the app presents the user with a set of
interaction	results about air pollution exposure and also sends this information to servers for later
	data interpretation.
Limitations on	Only designed for airborne pollution currently – could be reverse-engineered to be
use	applicable to water pollution relatively easily.
Suitability	This app is designed to integrate information about the user's position with existing
assessment	spatial datasets and expert knowledge on transport systems and air pollution. As such,
	it requires existing datasets to be available, and in the case of water quality monitoring
	is more applicable for assessing the user's likely exposure to water-borne pollutants
	that have already been mapped. This is an app that is not directly applicable but which
	would provide useful ideas for water-related applications.

Name	Water Quality Reporter
Website	http://www.bristol.ac.uk/aquatest/in-action/aquatest-system/wqr/
Designed	Transmits information from a water testing device to water supply companies.
function	
Potential for	This app is designed specifically to allow water monitoring results to be sent to a
water	central system for processing, and has been extensively tested and used in the field.
monitoring	The measurements that are uploaded by the user are perhaps not the full range that
	could be applied.
Technological	Relatively easy to use and technologically unsophisticated – this app is designed to be
sophistication	used by anyone in the field who has access to the relevant water quality monitoring
	equipment and a mobile phone. However, the data recording side is well designed and
	provides a framework for later remediation and interpretation.
User/device	Straightforward data input by the user – no connection between the monitoring device
interaction	and the mobile phone.
Limitations on	The user has to upload the measurements, rather than having a direct connection
use	between the monitoring device and the mobile phone or tablet. This means that there
	is a time/effort constraint on uploading multiple measurements.
Suitability	This app is quite suitable for water quality monitoring, but is fairly restrictive in that it
assessment	requires user input rather than connection to the monitoring equipment, and limits the
	types of observations that can be entered. Could easily and rapidly be replicated for
	use in Scotland, with more functionality.

Name	Aphid Speed Scout
Website	http://real.unl.edu/iOS/AphidSpeedScout/
Designed	Users provide information about aphid infestation rates on soybean, which is used in a
function	decision support tool for treatment methods.
Potential for water monitoring	Not in the current form. Included in this report as it provides an example of expert system-based apps that provide a response to the user based on one or more inputs.
Technological sophistication	Relatively simple, the input data and processing chain are quite basic.

User/device interaction	The user provides information about aphid densities on a plant, and some limited locational information. A response is given based on an expert system built into the
	арр.
Limitations on	Currently only applicable for aphids infestations on specific crop types.
use	
Suitability	Could be related to climatic conditions that are good/bad for aphid numbers, or for
assessment	giving an indication of current aphid counts that could then be used to model seasonal aphid population densities.

Name	Optimizer
Website	http://www.advancedagsolutions.com/optimizer.php
Designed	Data management decision support tool for cropping, applies input data from farmers
function	to data automatically downloaded about local weather conditions, and models crop
	growth, nitrogen uptake and other features.
Potential for	In its current form, this system is not suitable for water monitoring. However, as an
water	example of a system that can be used for recording and visualising data, and for using
monitoring	that data in 'background' models to produce new and useful information, it is
	extremely informative. The structure between pages within the app and the manner in
	which it takes data from the user and represents it could provide inspiration for more
	water-relevant monitoring apps.
Technological	This app displays a high level of technological sophistication, allowing users to input,
sophistication	organise and visualise their data and also linking this data along with existing weather
	data and models to produce new and potentially useful crop growth information.
User/device	The user needs to know what they are doing when they are using this app, which is
interaction	designed for technical specialists in the farming domain. There is a significant amount
	of data flow in both directions between the user, the app interface and the underlying
	models and data structures.
Limitations on	In its current form, this app is limited to what it was designed to do, namely to provide
use	decision support to farmers growing specific crops. It cannot provide water monitoring
	capabilities but as noted above, could well provide inspiration for a similar water
	monitoring tool.
Suitability	Not suitable for water monitoring in its current form, but does provide some useful
assessment	ideas.

Name	Platforma SINC
Website	http://www.alphagalileo.org/ViewItem.aspx?ItemId=128267&CultureCode=en
Designed	Equipment that can be used to detect mercury concentrations in water, based on
function	colour change in sensitive paper. Not fully implemented as a monitoring tool, but its
	use with mobile phones has been demonstrated.
Potential for	Good potential, needs to be more fully developed to be an integrated package. Some
water	kind of standardised detection mechanism (i.e. standardised chemosensitive paper in a
monitoring	mechanism that allows easy imaging) would improve the functionality.
Technological	Relatively low-tech, although the image analysis software requirements for detection
sophistication	and processing of the chemosensitive paper colour change are not trivial.
User/device	Some activities required on the part of the user, in relation to sample preparation and
interaction	acquisition of appropriate imagery.

		centre of expertise for waters
Limitatio	ons on	The limitations on this kind of application relate more to the chemosensitive paper (or
use		whatever sensing mechanism is used that changes colour). If there is a chemical of
		interest and a reliable colour-change chemistry that can be implemented in the field,
		then there are no limitations on application.
Suitabili	ty	Suitable for water pollution monitoring, if appropriate chemical-colour change
assessm	ent	mechanisms can be implemented that are cheap, rapid and accurate.

Name	H2020 Tech Transfer
Website	http://www.enterprise-europe-
	scotland.com/sct/services/enquire.asp?id=12%20RB%201B1N%203QG6&EnquiryType=
	BBS&reftype=RSS&refid
Designed	A small Serbian company developed a device for real-time monitoring of environmental
function	parameters using GPS/GPRS technology. It can be used in applications such as air
	quality monitoring. No further information is available, but it appears they have a
	device that can be plugged into mobile phones for monitoring a number of air quality
	parameters.
Potential for	This device may be highly suited to water monitoring needs; unfortunately very little
water	information is available. While the original description stated the purpose of air quality
monitoring	monitoring, the implication was that the device could be used for monitoring a host of
	parameters, including water-based measurements, based on the fact that it acted as an
	interface between the sensor and the mobile phone.
Technological	Unknown, but potentially sophisticated.
sophistication	
User/device	Unknown.
interaction	
Limitations on	Possibly dependent on the interface mechanisms used – if it has been designed with
use	specific sensors in mind, then it may be limited to those sensors due to hardware
	involved.
Suitability	Potentially very suitable for direct monitoring of water quality, although there was no
assessment	information given about how the readings were recorded, stored and presented for
	later use.

Name	Ghana Air Quality
Website	http://www.globalproblems-globalsolutions-
	files.org/unf_website/PDF/vodafone/tech_social_change/Environmental_Conservation _case3.pdf
Designed	Carbon monoxide sensor linked to mobile phone technology, used as a pilot study.
function	
Potential for	The sensor that links to mobile phones was designed specifically to record atmospheric
water	carbon monoxide levels. However, similar sensors could be developed with identical
monitoring	electronic interfaces to the mobile phone technology. Sensors that are relevant for
	water monitoring could therefore be developed.
Technological	The sensing device is the most sophisticated part of this system, with the recording app
sophistication	being relatively simple and low in 'options'.
User/device	No user/device interaction, this is a portable recording device that the user (a taxi
interaction	driver) transported in his vehicle and which recorded information on air quality over

time. The recorded information is uploaded to servers for later processing.
The limitations relate to the physical monitoring mechanisms – a water quality sensor
that produces a translatable electronic signal could be linked to a mobile phone just as
easily as a sensor that detects air pollution levels. However, such a sensor does need
to exist in the first place.
Highly suitable for water monitoring, if the monitoring equipment is available. An app
for recording readings could be produced rapidly and cheaply.

Name	Sensordrone
Website	http://www.kickstarter.com/projects/453951341/sensordrone-the-6th-sense-of-your-
	smartphoneand-be
Designed	Multisensor device for mobile phones, for use in experimental environmental
function	monitoring.
Potential for	This system has a lot of potential for water monitoring, as it allows sensors that
water	measure relevant parameters to be linked through Bluetooth technology to mobile
monitoring	phones, and provides a 'whole package' system for acquiring, storing and visualising
	logged data.
Technological	This is a relatively sophisticated system, as it includes sensors, connectivity to mobile
sophistication	phones for download and storage of measurements, and apps for visualising and
	controlling this information.
User/device	While a lot of the information acquisition and storage is automated, there is still a
interaction	degree of user/device interaction required in setting up the system for use and in
	ensuring that the observations are recorded properly.
Limitations on	Currently, there are only a small number of sensors available, although this situation is
use	changing rapidly. The user is therefore limited to using these specific sensors and
	cannot plug in a different sensor that may be of more relevance to their interests.
Suitability	Highly suitable for water monitoring, within a restricted range of parameters. The
assessment	system provides a complete package for rapid observation of the environment,
	although it does require quite a high level of understanding and implementation on the
	part of the user.

Name	EMAP
Website	http://www.aecom.com/What+We+Do/Environment/Practice+Areas/Impact+Assesme
	nt+and+Permitting/Environmental+Mobile+Application+for+Projects
Designed	GIS package for mobile tablets, designed to allow information to be captured, edited
function	and processed in the field. Designed as an all-in-one package that facilitates
	environmental monitoring at all stages from field data capture to reporting, all from a
	single mobile platform.
Potential for	Potentially extremely useful for aiding water monitoring, as a mechanism for recording,
water	processing and reporting. Not designed to allow monitoring devices to link directly to
monitoring	the tablet, so data entry still has to be carried out manually.
Technological	A very sophisticated package, requiring a high level of user understanding, but with a
sophistication	lot of tools to allow field monitoring to be carried out more rapidly.
User/device	The user interacts with the software package in a similar manner to that in which a GIS
interaction	package would be used on a desktop. Additional functionality for reporting and filling
	in of technical sheets is also built in.

	centre of expertise for waters
Limitations on	The technology is proprietary to AECOM, a large American technical and management
use	support company. Licensing may or may not be possible.
Suitability	Extremely suitable for a wide range of environmental monitoring applications.
assessment	

Name	SEPA/Geofield diffuse pollution assessment
Website	http://www.sepa.org.uk/about_us/news/2013/sepa_wins_connect_ict_innovate.aspx?
	lang=en-gb
Designed	Use of off-the-shelf tablets and sensor recording software in water monitoring. The
function	application of this system is broad and has not been fully explored, as it allows users in
	the field to record a large number of different readings and to integrate these with
	existing spatial datasets.
Potential for	Rather than useful for water monitoring directly, this system appears to have been
water	designed to facilitate the recording and later interpretation of a wide range of
monitoring	environmental monitoring. Its potential for water monitoring lies therefore in assisting
	with the input, organisation and archiving of readings rather than the direct acquisition
	of the readings themselves.
Technological	High levels of technological sophistication are applied in the software that is used for
sophistication	the recording and organisation of sensor readings in the field. However, there is no
	mechanism for the user to integrate monitoring devices directly into the system and to
	record the readings without the human interface.
User/device	The user must enter measurements into the system, which does not provide any
interaction	feedback or processing but which does allow visualisation of the data entered.
Limitations on	The main limitation here is the user themselves – if a system could be developed to
use	accept data directly from a number of recording devices, then the user could act in a
	more effective 'oversight' capacity rather than having to be directly involved in the
	measurements and their recording.
Suitability	Highly suitable for monitoring of water and environmental pollution, and for a number
assessment	of other monitoring requirements. The suitability lies more with the system's
	facilitation of data entry and recording, and with allowing later assessment, than with
	the direct recording of sensor readings or the integration of readings with existing data
	to provide 'added value'.

Name	NatureWatch
Website	http://www.eea.europa.eu/mobile
Designed	Allows citizen scientists to identify and report invasive species
function	
Potential for	As with "What's Invasive" this app could achieve monitoring of rivers and water bodies
water	for invasive species.
monitoring	
Technological	Similar to "What's Invasive", but the user can also submit video and audio clips that
sophistication	could be of value in recording moving water.
User/device	This app can be used with the minimum of training or experience, and requires no
interaction	sophisticated technical knowledge on the part of the user. Additionally guidance is
	given on recognising invasive species.
Limitations on	This is very much a 'what goes in is what comes out' app – all information of use is

	centre of expertise for waters
use	entered by the users, whose level of expertise in the subject area may vary. It is
	difficult therefore to produce statistical or numerical evaluations of the topic of
	interest.
Suitability	Potentially useful for capturing the spatial location and distribution of qualitative
assessment	observations. Not capable of capturing quantitative observations unless used in
	parallel with monitoring equipment. In order to make use of this app for monitoring
	water quality, it would have to be developed slightly to allow different observations to
	be entered; it is therefore only suitable for monitoring of invasive species in or near
	water bodies.

Name	SIFSS
Website	http://sifss.hutton.ac.uk/
Designed	Allows a user to find information about soil at their location (using the unit's GPS or
function	interactive map) and all over Scotland
Potential for	Potentially useful in assessment of nutrients and eutrophication – soil N & P are
water	available in the app. Future developments are likely to include reporting on whether
monitoring	the user is in an Nitrate Vulnerable Zone and the HOST (Hydrology of Soil Type) class.
Technological	The most comprehensive of existing UK soils apps (albeit with information for Scotland
sophistication	only). Detailed information on up to 15 soil characteristics from the Soil Survey of
	Scotland are provided for each soil horizon, for both cultivated and semi-natural land
	covers (where they exist). The app accesses James Hutton databases, so always points
	to the most up to date data.
User/device	This app can be used with the minimum of training or experience, and requires no
interaction	sophisticated technical knowledge on the part of the user. Where several soil series are
	present at a location the user is given a description of the appearance of the soil as a
	guide to selecting the correct series. No user information is incorporated in the app.
Limitations on	Currently uses only the national soil mapping at 1:250,000, but future versions will
use	incorporate higher resolution mapping where it is available.
Suitability	At present this is a soil information tool with limited relevance to water, but potentially
assessment	significant use in the riparian zone.

Name	SOCIT
Website	http://www.hutton.ac.uk/research/groups/information-and-computational-
	<u>sciences/esmart</u>
Designed	SOCiT provides the user with a near instantaneous field assessment of soil organic
function	matter content using image analysis and modelling.
Potential for	None directly, but potentially very useful conceptually – the integration of sensor
water	information and environmental data sets in near-realtime.
monitoring	
Technological	From the perspective of the user and in hardware terms low, using only the device's
sophistication	camera (and a shovel), but computationally highly sophisticated, integrating automated
	image analysis and neural network environmental data analysis.
User/device	The user has to dig a hole, drop an image normalisation card in it, take a photo and
interaction	click a button for the soil organic matter to be calculated.
Limitations on	Currently Scotland only (due to access to environmental data sets), potentially
use	extending to rest of UK in the future, subject to collaboration with other data holders.

Suitability At present this is a soil information tool with limited relevance to water, but potential use in the riparian zone. However, this app could provide a template for other apps integrating image and environmental data analysis which could be used in the water environment.

Name	SoilWeb
Website	http://casoilresource.lawr.ucdavis.edu/soilweb/
Designed	Provide access to soil mapping information from the United States. This includes
function	drainage class, water table depth and available water storage (in soil).
Potential for	None in Scotland, but some potential in the US as detailed soil mapping is used in
water	addition to the soil hydrology information.
monitoring	
Technological	This appears to be similar to SIFSS, but with more restricted user control of location
sophistication	selection – this app permits only input by the device GPS.
User/device	Minimal "Get My Location".
interaction	
Limitations on	US only - blocked for Android distribution outside US and while available for Apple
use	devices the only input is via the device's GPS, so it is effectively impossible to explore
	the app.
Suitability	Limited.
assessment	

Name	SoilMapp
Website	http://www.csiro.au/soilmapp
Designed	Provides access to soil mapping information from Australia. This includes maps,
function	photographs, satellite images, tables and graphs of data about nearby soils. Also
	includes soil's physical and chemical characteristics, including acidity (pH), soil carbon,
	available water storage, salinity and erodibility.
Potential for	Potentially useful due to the large number of attributes linked to soil hydrology, but
water	only in Australia.
monitoring	
Technological	This is essentially an interactive map, but gives access to very large amounts of data in
sophistication	a convenient manner.
User/device	The user interacts with the soil map displayed on the device to obtain information.
interaction	Information on site conditions can also be uploaded to CSIRO by users for subsequent
	use in map validation.
Limitations on	Available for iPad only, data for Australia only.
use	
Suitability	Limited, but a good example of what can be done, and potentially useful in guiding
assessment	future developments of existing apps.

Name	mySoil
Website	http://www.bgs.ac.uk/mysoil/home.html
Designed	To provide access to soil mapping information from the majority of Europe. This app
function	provides extensive coverage of soil information, but with a limited number of

	centre of expense for waters
	attributes, and low precision (e.g. Organic Matter: "Medium" and pH: "Slightly Acidic")
Potential for	With current information available in the app quite low, however, it is likely that more
water	data sets will be added in the future.
monitoring	
Technological	Fairly limited, a clickable interactive map.
sophistication	
User/device	Uses a clickable interactive map with web mapping services. Users can also upload
interaction	their observations which are subsequently displayed as pushpins.
Limitations on	While the extent of the cover is comprehensive, the depth of information being
use	provided is low.
Suitability	The app contains information from the Countryside Survey and the Land Cover Map
assessment	(2007). It is possible that other aspects of the data from these surveys, if incorporated
	in future versions (or new apps), could make this app more useful in water monitoring
	or assessment.

Name	Soil Test Pro
Website	http://www.soiltestpro.com/video/
Designed function	To manage soil fertility data and assist in collection of soil samples. Once registered, the app gives users access to satellite imagery of their farm/site. It allows them to demarcate their own field boundaries on foot/by vehicle, create a custom sampling grid at user specified intervals, then when they walk the field the app will guide them to each of the grid points, and assign it a unique sample id. It is assumed the user will send the soil sampled at each point to a lab for analysis and this unique id will allow them to trace the results from each sample. Details of all samples are automatically synced to their web account with the app developer (also the lab that analyses the samples). Results can be sent back with geolocation information suitable for uploading to GPS-enabled farm machinery.
Potential for water monitoring	Although the sampling frame for soils and waters are different, the ability to delineate boundaries and create sampling locations on the fly is a powerful and useful ability, especially when combined with the automatic ID creation for samples. At the linked web account it is possible to automatically print shipping address sheets, specify the type of analyses to be done, and download results. This technology would be particularly useful when taking sediment samples from standing waters or when sampling soils in the riparian zone.
Technological sophistication	Similar to SIFSS but with the added on the fly polygon and point creation.
User/device interaction	Very easy for a non-specialist to work out suitable sampling locations. Combined with a robust set of sampling protocols, it would allow anyone to take a set of samples with a high-degree of quality control. A possible addition would be to expand on the simple grids generated e.g. 'W' patterns, transects, more sophisticated statistical sampling algorithms.
Limitations on use	Current version only in US. Access to suitable source of satellite/aerial imagery would allow it to be modified for use in other locations.
Suitability assessment	Given the fluid nature of water, unlikely to be useful in moving waters or in measurement of dissolved water chemistry in standing waters. Great potential for sediment sampling.

centre of expertise for waters

Name	Precision Earth
Website	http://precisionearth.com/
Designed	Similar to Soil Test Pro, designed to record farm sample locations.
function	
Potential for	See above.
water	
monitoring	
Technological	Seems to have more flexibility in output file formats – supports various GIS and image
sophistication	packages. Also allows viewing of cropping history, can integrate weather data, can
	work where no access to 3G/wifi.
User/device	See above
interaction	
Limitations on	Not free
use	
Suitability	See above.
assessment	

Name	Lapka
Website	https://mylapka.com/
Designed	Lapka Personal Environment Monitor is a collection of sensors (which fit together in a
function	stylishly designed wood and moulded plastic block) which interface with an iPhone via
	the associated app. The sensors are individual devices which plug into the audio jack of
	the phone and measure electrical conductivity (which they claim is highly correlated to
	nitrate concentration so is billed as a 'food quality' monitor), humidity and
	temperature, radiation, and electromagnetic fields.
Potential for	Depending on how sensitive the sensors actually are, having the capability of
water	measuring electrical conductivity and temperature in one device which interfaces
monitoring	directly to the phone (thus allowing records to be associated with geotagged
	photographs) is appealing. How the device would compare against purpose built
	sensors is unknown without further testing. The package is sold for \$220 (USD) which
	the makers claim compares favourably with the cost of a single humidity sensor at
	around \$200, but puts it outside the range of most citizen scientists unless provided by
	a third party.
Technological	The various sensors are all available in other forms (e.g. Thermodo for temperature),
sophistication	but the package appears to be much more about style than function.
User/device	Simply plug each sensor into the phone and the app records the appropriate
interaction	measurement.
Limitations on	Cost, sensors not especially sensitive or measuring different things to other devices. As
use	usual with this type of add-on device, the practicality of using it in or near water needs
	to be carefully assessed.
Suitability	Moderate/Low. Limited range of useable information, although having multiple sensors
assessment	in one device is a plus.

Name	Tesla Microscope
Website	http://tesla.dma.ucla.edu/TEST6/?q=research/fluorescent-microscope-cell-phone-
	<u>attachment</u>

Designed	This device is a 'matchbox-sized attachment that converts a mobile phone's camera
function	into a fluorescent microscope. The device utilizes an inexpensive lens and battery-
	powered, light-emitting diodes to create a field of view two orders of magnitude larger
	than previous cell-phone fluorescent microscopy technology. It is more than five times
	smaller than previous cell phone microscopes'.
Potential for	The device is designed to be able to quickly and accurately analyse large sample sizes.
water	The proposed use is in testing medical samples in remote areas, but the technology
monitoring	would easily lend itself to analysis of water samples. The inventors state that while it
	does not have the resolution of conventional microscopes, it is high enough to screen
	for pathogens in drinking water or food and to image various body fluid samples to
	search for disease marker.
Technological	Extremely high, although it appears to have been designed for size and robustness in
sophistication	the field. No indication if it being mass-produced or if it is still at the experimental
	design stage.
User/device	Relies on a high degree of user input and interpretation.
interaction	
Limitations on	Some other equipment required (e.g. a colour filter) although this device is designed to
use	be able to work with cheaper alternatives to the usual filters.
Suitability	Potentially very suitable. Individual users would need suitable training before it could
assessment	be rolled out.

Name	Proscope
Website	http://www.bodelin.com/proscope/proscope-micro-mobile
Designed	A professional quality microscope which attaches to an iOS (such as iPhones or iPod)
function	device. This relatively inexpensive device (c\$150 (USD)) fits onto an iOS device and
	provides 20X to 80X magnification, with high quality optics. Includes stand, integrated
	LED lighting, and allows photographs of the subjects to be taking using the devices'
	native camera.
Potential for	Potentially extremely useful for in the field monitoring of invertebrate and other
water	biological specimens. Adding of geotagged photographs has potential for extremely
monitoring	rapid biological field assessments.
Technological	High. Produced by a company with a track record for portable and/or internet enabled
sophistication	microscopes. Robust design specifically designed for field operation.
User/device	Some familiarization with the equipment required (as well as the specific skills required
interaction	to carry out the task in question).
Limitations on	Interpretation skills of user
use	
Suitability	Wide range of potential applications in aquatic/riparian monitoring and measurement
assessment	

Name	Thermodo
Website	http://thermodo.com/
Designed	An external temperature sensor for a smartphone, tablet
function	
Potential for	The device (which interfaces with an app from the same developer) is a very small
water	temperature sensor which plugs into the audio jack of the phone. While it is designed

monitoring	to measure air temperature, there seems to be no reason why you could not plug an extension into the audio jack, and dangle the sensor itself in water. While it offers no
	real benefit over using a standard thermometer, as the app will (presumably) geotag
	the locations where the measurements are made, it would cut down on data
	processing time in the office plotting temperature readings spatially/temporally.
Technological	Medium/Low. The sensor itself is the most sophisticated part, although affordable
sophistication	(c\$30 USD))
User/device	Simply plug in the device, start the app and record.
interaction	
Limitations on	No better than a standard thermometer. Even if solution for working in water proposed
use	above is workable, phones are not very robust so care would have to be taken in the
	field not to damage it.
Suitability	Limited, but also shows the capability for developing small sensors which plug into
assessment	smart device and can interface with a simple app.

Name	Luxi
Website	http://www.kickstarter.com/projects/jamesflynn/luxi-incident-light-meter-adapter-for-
	<u>iphone</u>
	http://www.esdevices.com/collections/all/products/luxi
Designed	An incident light meter which clips onto an iPhone camera to help determine best
function	exposure setting for a (D)SLR camera.
Potential for	None directly. Due to the nature of the device and the way it fits over the phone it
water	interferes with the camera so apps which require the user to take a photograph and
monitoring	upload it if done via an iPhone cannot be used directly (e.g. SoCit, iDee etc). Where it
	could be of benefit is in tandem with applications where image post-processing is used
	on a photo of water as it helps ensure that the photograph is properly exposed,
	meaning the image sent for analysis is of the 'best' quality.
Technological	Medium. The device is comparable in function to a professional light meter, but
sophistication	somewhat cheaper, and is very small and portable.
User/device	Requires a good knowledge of photography and the camera being used so the settings
interaction	suggested by the app which comes with the device can be properly implemented.
Limitations on	Impairment of iPhone camera
use	
Suitability	None directly. Some testing would be needed to determine if the improved quality of
assessment	images taken after using the app is actually of any benefit to a post-processing
	application.

Name	Agricultural Water Quality Self Assessment 1.0 (AWQS)
Website	http://appfinder.lisisoft.com/app/agricultural-water-quality.html
Designed	To help a user (a farmer) assess the risk of adverse impact on water quality of their
function	growing practices.
Potential for	This iPad app is intended more as a decision support system to identify potential
water	diffuse pollution risks than monitor water quality per se. The user is asked to supply
monitoring	information on a property basis. There are a total of 43 questions which gather
	information about location, whether the property is near a watercourse, management
	of potential pollution sources etc. A final assessment for each category ranks the risk

	into low/med/high categories, and gives an indication of the cost/difficulty/time required to implement recommended mitigation options.
Technological sophistication	Low. App is a simple questionnaire.
User/device interaction	User works through screens, selecting options from menus or adding free text.
Limitations on use	Currently only option for crop type is 'tree crops', based in US so some of the management options and legislative background not immediately relevant to UK/Scotland
Suitability assessment	Only as a risk assessment, no monitoring option

Name	Alcohoot
Website	http://www.getalcohoot.com/
Designed function	Measurement of blood alcohol concentration (BAC)
Potential for water monitoring	This is a small sensor device which attaches to a smartphone (compatible with iPhone, iPad and Android devices currently) via a 3.5mm jack. Its intended purpose is to measure the user's blood alcohol content in the same way as a conventional breathalyzer. It uses a fuel cell sensor (similar to the type used in police breathalysers) as opposed to a semi-conductor sensor, which allows it to be specific to alcohol (and unaffected by other solvents or chemicals such as hairspray, deodorant etc), as well as a patented air sensor to detect airflow into the device. If the sensor could be replaced with a different kind, then it may be possible to use as a relatively sophisticated air quality detector. It would not be useable directly in water, or to measure water chemistry, but the possibility for measuring point source gas emissions which might help in tracing of chemical leaks, spillages etc might be explored.
Technological sophistication	The internal sensors are quite sophisticated, although the device itself retails for \$75 (USD) so is still affordable. For the BAC measurements, the sensor needs to be periodically recalibrated which would either require return to base (RTB) or provision of some method for the user to do it in the field.
User/device interaction	The user simply connects the device to the phone and blows into the mouthpiece.
Limitations on use	Need for periodic calibration (see above)
Suitability assessment	Not directly suitable, but shows the capability of designing and implanting add-on sensors for specific applications. The challenge would be to create small, accurate and reliable enough versions of other gas sensors for this to be a useable technology for pollution monitoring

Name	WiMoto
Website	http://www.wimoto.com/
Designed	A variety of small wireless sensors which can measure ambient temperature, humidity,
function	light, soil moisture, soil temperature, object temperature, human presence and
	movement.
Potential for	Unlike a number of the other sensor add-ons in this review, these can send their data

water	wirelessly via Bluetooth. Assuming they are robust enough for deployment in the field,
monitoring	they could replace the need for manual download of temperature loggers and/or allow
	placement of the sensors in locations where accessing loggers frequently would be
	hazardous or time-consuming. The example use suggested for the temperature sensor
	on their crowdfunding page is to monitor a swimming pool.
Technological	The sensors themselves appear no more complex than others mentioned here but the
sophistication	addition of battery powered Bluetooth is different.
User/device	All data collected via a smartphone or tablet, which can then be uploaded to a cloud
interaction	server. Potentially allows data to be collected more quickly and easily than traditional
	in-situ loggers.
Limitations on	Battery powered, the makers claim that batteries last for about a year. Uses Bluetooth
use	SMART technology so receiving device needs to be capable of acquiring signal.
Suitability	Potentially very high, especially for light and temperature in water. Still at the
assessment	crowdfunding stage, but could possibly be used to develop other sensors using similar
	infrastructure e.g. dissolved oxygen, specific chemicals.

Name	MoboSens
Website	http://nanobionics.mntl.illinois.edu/mobosens/#
Designed	A smartphone based sensor add-on which can accurately measure nitrate
function	concentrations in water due to be released by end of 2013. Development of arsenic
	sensor underway, with plans in place to expand to sensors covering other pollutants
	(specifically heavy metals).
Potential for	Specifically designed to tackle a major diffuse pollution issue.
water	
monitoring	
Technological	Sensor prototype has been developed at Illinois University. Further development and
sophistication	testing at the crowdfunding stage.
User/device	Unsure – still at testing stage with pilot citizen science group/crowdfunders, but
interaction	assumed to be simple given purpose.
Limitations on	Unsure. Some training presumed, and no information given about where data would be
use	uploaded and analysed beyond the pilot area.
Suitability	Very high. If the technology can be expanded to detect a wider range of determinands,
assessment	then it would be the ideal device for large scale, crowdsourced water chemistry data
	collection.

Name	smarTROLL
Website	http://www.in-situ.com/products/water-quality/handheld-systems/smartroll-
	multiparameter-handheld
Designed	This app is designed to interface with the smarTROLL water quality probe produced by
function	'in-situ'. The probe can measure dissolved oxygen, pH, ORP, conductivity (actual or
	specific), salinity, total dissolved solids, resistivity, and density, as well as physical
	parameters such as air and water temperature, barometric pressure, water level, and
	water pressure. The phone app replaces the need to have a handheld meter or logger
	attached to the probe, and allows data to be sent instantly to the office or uploaded to
	the cloud subject to having a phone signal.
Potential for	Specifically designed for this purpose

water	
monitoring	
Technological	Low for the app itself as it only records readings made by the probe.
sophistication	
User/device	Very simple, no real user knowledge required as the probe (assuming correct
interaction	calibration) can be put in water and readings taken without any assumed skill or
	technical expertise. Eliminates need to download separate logger and potential
	transcription errors from manually adding data.
Limitations on	Specific to the sensor, which is expensive. No capability for expansion as it would
use	require the probe itself to have extra sensors added.
Suitability	Very high for the specific attributes measured.
assessment	

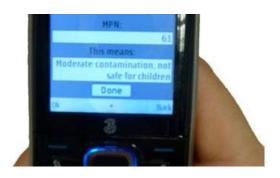
4. DISCUSSION

Most of the examples given above do not relate directly to water monitoring. Instead they provide examples where monitoring of the environment is being carried out, and where the technology and software developed could be altered for use in water quality monitoring. Only a small number of the examples found are immediately and directly applicable to water monitoring without a level of investment. We emphasise that this investment is low in nearly every case – there are a lot of solutions available that would be very appropriate with a small amount of tweaking. In each case most, if not all, of the technological barriers have been overcome through earlier development work.

The examples found in this search demonstrate a trend whereby the more sophisticated and/or expensive the technological application, the more likely it is to be used for scientific or industrial research. Complex equipment, requiring experienced users does not appear to be used in citizen science. Conversely, purely app-based recording of simple observations does not occur with sophisticated monitoring of complex environmental conditions.

A notable example is the application of SEPA's existing framework for recording, organising and later processing of environmental monitoring readings using tablets and geospatial software developed by Geofield. This example facilitates a wide range of environmental monitoring. In order to take this system a step further, it is necessary to remove the human element, or to at least reduce the amount of human data input required. Automated sensor acquisition using Bluetooth technology or wifi download would require a fair degree of further development in the data recording interface, but would enable measurements to be made more rapidly and would remove the risk of human error.

The examples found in this search which may provide this 'missing element' are the Sensordrone, WiMoto and smarTROLL. While lacking the sophistication in terms of presentation and immediate user ease of the Lapka, these systems are highly flexible and generalizable. Furthermore they are to a certain degree 'programmable', i.e. the sensor readings can be controlled by the user in a manner that is not available through other systems. The developers of Sensordrone have produced a system with a wide range of potential applications that integrates well with mobile phone technology and produces useful information. It is however, contained within an unattractive and poorly-marketed package. Comparison of the Sensordrone webpage with that of Lapka is the first sign that here we have something designed


with scientists and 'early adopters' in mind, rather than the trendy consumer market. The other two systems, WiMoto and smarTROLL, are somewhat more professionally presented.

Additional systems of note include the following:

• PEIR – a useful example of integrating automatically recorded sensor data with position and existing spatial datasets of relevance. The image below is extracted from the referenced link, as is the case with images relating to the other examples given.

• Water Quality Reporter – an example of a relatively simple, widely applicable app for uploading observations. This concept could be readily and rapidly applied to almost any kind of water-related monitoring.

• Platforma SINC – cleverly applies colour interpretation from the mobile phone camera of sensor strips. A relatively low-tech but potentially rapid and simple tool.

- H2020 Tech Transfer (no imagery available) this is a good idea that needs to be developed further before field application is possible, but worth watching out for. Very little detail has currently been made available.
- EMAP (no imagery available) this tablet-based GIS package is similar in concept to the system currently being used by SEPA and developed by Geofield. A very useful system for facilitating monitoring in the field. The next step (removing the human input requirements and connecting directly to sensors) needs to be made.
- Lapka a visually pleasing but relatively restricted set of sensors, the most relevant of which is for nitrate concentration. Possibly not rugged enough for field-based research purposes.

- Tesla microscope (no imagery available) a microscope attachment for mobile phones that could be used for monitoring water-borne bacteria, requires user expertise in identification but potentially extremely useful.
- Proscope similar to the example above, with a few additional features including geotagging of images and easier recording of video.

• Sensordrone – the ability to link multiple sensors to mobile phone technology through Bluetooth, in a small and robust package. Potentially extremely useful for a wide range of environmental monitoring.

• WiMoto – same as for Sensordrone and smarTROLL.

 smarTROLL – same as for Sensordrone and WiMoto. In relation to these, smarTROLL appears to have the edge in functionality and usefulness for water monitoring, but is likely to be more expensive.

• MoboSens (no imagery available) – this system is not available yet and few details are provided. It promises a wide range of specific sensors that can connect to mobile phones.

5. CONCLUSIONS

There are a number of different systems available on the market that are at least partially relevant for water monitoring, or that can inform developments in that direction. We have identified a number with particular promise, as well as categorising the examples found within a conceptual framework that enables comparison. Field-based environmental monitoring using off-the-shelf components is an area that is developing extremely rapidly, and trends in what is available would seem to indicate that more functionality and integration between sensors and mobile phone technology is highly likely in the near future.

6. **REFERENCES**

- 1. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T. (2010). A survey of mobile phone sensing. IEEE Communications Magazine 48(9), 140-150.
- Aitkenhead (2013). The E-SMART project (<u>http://www.hutton.ac.uk/research/groups/information-and-computational-sciences/esmart</u>).
- 3. H2020 technology transfer (2012). <u>http://www.enterprise-europe-</u> <u>scotland.com/sct/services/enquire.asp?id=12%20RB%201B1N%203QG6&EnquiryType=BBS&refty</u> <u>pe=RSS&refid</u>.

CREW Facilitation Team

James Hutton Institute Craigiebuckler Aberdeen AB15 8QH Scotland UK Tel: +44 (0) 844 928 5428

Email: enquiries@crew.ac.uk

www.crew.ac.uk

