Skip to content
Home >> Node
 
15th April 2022

International policy review on small sewage systems

Small sewage systems (SSS);  Cover photographs courtesy of: clockwise – Septic drain fields Hobrechtsfelde in LSG Buch Leonhard Lenz Lid of a rural septic tank beside an intersection, Slammerhogen, Lysekil Municipality, Sweden A septic tank being installed. Nonztp

Private small sewage systems, such as septic tanks, if not properly managed, can lead to a number of issues including pollution of the water environment and nuisance issues such as ponding and odour. These issues can have significant negative impacts on local communities and are difficult for these communities to address. Through an international review of approaches to small sewage systems, this project sought to understand how small private sewage systems are managed in other countries (with similar socio-economic profiles to Scotland) and the benefits and disbenefits associated with different approaches, with a view to informing approaches in Scotland.The review focused in particular on policies relating to the authorisation of new and existing small sewage systems and to the ongoing regulation both ‘historic’ and newly-installed systems.

This project sought to answer the following questions:

  • What is the policy baseline on small sewage systems (SSS) in Scotland?
  • How are small sewage systems (SSS) and discharges in other countries controlled?
  • Are there examples of approaches that encourage circular use of water, energy or nutrients?

The international review outlines the commonalities in SSS related issues across countries where SSS are used and draws a serie of key recommendations for policy and management. 

The guidance document provides information for developers to enable them to identify the most appropriate sewage systems for a specific use and instil confidence to planners and the regulator that such systems are fit for purpose and suitable for private operation over the long term.

 
31st March 2022

Better Buffer Design, Placement and Management

Image of good and bad buffers Cover image courtesy of: Marc Stutter and Mark Wilkinson (James Hutton Institute)

Can improved design concepts for riparian buffer measures and placement improve uptake and best practice in Scotland?

At this present time of developments in knowledge around diffuse pollution management, habitat restoration of river corridors and natural flood management, it is timely to make a synthesis of latest research with specific regard to understanding best practice in riparian zone management. So-called buffer zones alongside watercourses have potential to enhance ecosystem services in Scotland at a time of growing concerns for water quality, floods and droughts, bank-side habitat loss, condition of aquatic species and superimposed climate pressures. Yet, the majority of riparian management is basic and often mismatched to the specific needs and pressures of the site, for example not effectively targeting site-specific pollutant pathways by which runoff reaches watercourses. This CREW Policy Note examines how considering an enhanced range of designs, and targeting them to most suitable landscapes and pressures on the environment, can be achieved to improve multiple outcomes, including aspects of wider context for improving the uptake of enhanced riparian measures.

1st April 2022

Webinar: Lessons to be learned from the development of the Scottish SARS-CoV-2 wastewater screening programme

Image of covid virus
As part of an ongoing CREW project to detect SARS-CoV-2 variants in wastewaters, a webinar will take place on Wednesday April 27th 12.30 to 14.00 to examine the lessons learned from the development of the SARS-CoV-2 wastewater screening programme in Scotland.

Lessons to be learned from the development of the Scottish SARS-CoV-2 wastewater screening programme

The Scottish Environment Protection Agency (SEPA), together with Scottish Water, have been monitoring the levels of SARS-CoV-2, the causative agent for COVID-19, in wastewater across Scotland since mid-2020 to provide an overview of the epidemic and to inform health boards and policy makers. Funding from the Scottish Government’s Strategic Research Programme, managed by CREW, has played a key role in establishing the programme.

As part of an ongoing CREW project to detect SARS-CoV-2 variants in wastewaters, a webinar will take place on Wednesday April 27th 12.30 to 14.00 to examine the lessons learned from the development of the SARS-CoV-2 wastewater screening programme in Scotland.

The webinar will be introduced by Professor Andrew Millar, former Scottish Government CSA ENRA and include short presentations from Dr Isabel Fletcher and Professor Catherine Lyall of the University of Edinburgh. As part of this event, researchers will share learning on how to be more prepared for rapid response collaborative research in future crises. There will be a Q&A session and an optional opportunity for informal discussion at the end of the event.

If you wish to attend this event, please register on Eventbrite here.

 
30th March 2022

Environmentally informed pharmaceutical prescribing in Scotland

Front cover image showing medicine - Different Medicines, Patient Education, and Green Pharmaceuticals  (www.canva.com)

The prescription of pharmaceuticals is the most commonly used healthcare intervention and indisputably has an important role to play in human health. However, pharmaceuticals can have negative effects on the environment and living organisms. Firstly, pharmaceutical use significantly contributes to the healthcare sector’s carbon emissions. Secondly, pharmaceutical residues from human excretions and improper disposal of unused medicines can enter the water environment through wastewater and endanger aquatic life. Thirdly, pharmaceutical substances in the environment are thought to contribute to the global threat of antimicrobial resistance.

Often, a choice of pharmaceutical options is available to prescribers with decisions informed by therapeutic benefit, cost, and patient-related factors. To account for the environmental impacts of pharmaceuticals, environmentally informed or eco-directed prescribing proposes: 1) reducing pharmaceutical consumption as appropriate through improved rational prescribing practices; and 2) selecting medicines which have less environmental impact through the integration of environmental criteria in the development of medicine formulary. This would contribute to the sustainability of the healthcare sector and safeguard both public and planetary health.  

A joint analysis of policies on pharmaceutical prescribing and environmental monitoring of pharmaceutical substances in water environments was conducted to investigate whether the current policy landscape supports the adoption of eco-directed prescribing in the Scottish context. Barriers to and enablers for the policies and its implementation were also identified through a series of knowledge exchange activities with key actors.

Pharmaceutical pollution and the need to address this are recognised in key healthcare and environmental policies. However, barriers to the integration of environmental criteria in medicine appraisal, environmental monitoring of pharmaceutical substances, awareness of stakeholders, and coordination between key expert groups need to be resolved.

A three-pronged policy framework that should be embedded within the processes of healthcare and environmental agencies in Scotland is proposed to effectively integrate eco-directed prescribing as a joint programme of health and environmental sectors in the country. This three-pronged policy framework includes: 1) the organisation of a coordinative mechanism between key stakeholders; 2) systematic integration of environmental criteria in formulary development supported by expert evaluation of environmental risks of pharmaceuticals; and 3) improving knowledge of healthcare workers and the public on the environmental impact of medicines.

 

 
24th March 2022

Moving to more sustainable methods of slurry application: implications for water quality of waterbodies and water protected areas

CRW2020_02_Front_Cover Cover photographs courtesy of: NFUS, Stock Adobe

This report is a quick scoping review (QSR) of peer reviewed and grey literature to provide an evidence-based comparison of different low emission slurry spreading (LESS) approaches in terms of farming practice, ammonia and nitrous oxide emissions and risk of water pollution from slurry spreading to inform farmer-focused guidance on LESS. The work is focused on slurry-borne contaminants that are relevant to the water quality objectives under the river basin management plans (RBMP) set by the Scottish Environment Protection Agency (SEPA), such as nitrate, phosphorus and faecal indicator organisms (FIO).

The key question addressed by the project is ‘What are the effects of low emission slurry spreading (LESS) approaches on water quality?

This QSR showed that the key factors influencing the impact of LESS approaches on losses of slurry-borne pollutants to water are precipitation, soil moisture, soil permeability and drainage, and presence of vegetation, be it crop, grass or vegetated buffer strips. The role of these factors has already been captured in the current regulatory framework, stipulating specific obligations for farmers under GBR18 and The Action Programme for Nitrate Vulnerable Zones (Scotland) Regulations 2008. The already existing guidance is still valid to protect water quality.  However, the choice of LESS approach should be determined by environmental designations and account for the most vulnerable environmental component (soil/atmosphere/ waterbodies) of the agro-ecosystem. Guidance to farmers should also consider a compromise between feasibility, cost, and environmental and agronomic objectives.

22nd March 2022

Water Wall in Motion: Winners!

Winners announced at World Water Day!

In March 2020 when the pandemic succeeded to 'lock Scotland down', CREW, in partnership with SEFARI Gateway, SAGES and HEIs, opened a video competition to virtually engage Scotland’s water community and share contemporary views of the importance of water in research, management, innovation and recreation.

Videos were submitted to one of seven thematic areas and were captured online for future use as a teaching resource and to promote wider engagement of our water community.

At World Water Day (22nd March 2022), a film of the winning entries was shown and prizes awarded for each category (see below).

The acceptance speech of the Sefari Gateway theme winner, Kate MacLeod can be viewed here.

Thanks to everyone for supporting this project by sharing excellent videos, the universities etc for helping to promote the project and SEFARI Gateway and SAGES for their financial support.

Theme Title Winner
Droughts and Floods Allt Lorgy, 'Stage Zero' Approach to River Restoration Duncan Ferguson (Spey Fishery Board and Partners)
Freshwater Restoration The River Leven Restoration Project Sarah Macdonald (Fife Coast and Countryside Trust)
Innovation in the Water sector Innovator in water treatment technology Victoria Porley (Uni of Edinburgh)
Living with Climate Change Wetland farming for climate adaptation Yanik Nyberg (Seawater Solutions)
Nature Based Solutions

Overview of work undertaken to understand the ecosystem

service provision potential of floating treatment wetlands

Jonathan Fletcher (University of Stirling/HNIC)
Water Quality "We all have a role to play in reducing water contamination" Lucille Groult (Uni of Dundee)
Water and Wellbeing Rocket Man!! Citizen science project : OurVoice Susan Grant (Glasgow Caledonian Uni, Cadder Primary School)
SEFARI Gateway

The Hebridean Mermaid shares her love of the ocean and

the therapeutic benefits of the underwater world.

Kate MacLeod

 

 

 
18th March 2022

Effectiveness of construction mitigation measures to avoid or minimise impact to groundwater dependent wetlands and to peat hydrology

Cover photographs courtesy of: Abertay University

The overall aim of the project was to review the effectiveness of standard mitigation measures to maintain the hydrological conditions within peat soils and wetland habitats. The findings of this work will assist the Scottish Environment Protection Agency (SEPA) to provide knowledge and guidance to developers in relation to appropriate construction techniques and enhance practice around avoidance, impact minimisation, habitat creation and restoration.

This research identified the most common impacts from construction activities as well as the efficacy of different mitigation methods in minimising those construction impacts on peatlands and wetlands. The work involved a literature review of evidence of the impacts of construction on habitats and groundwater in groundwater dependent wetlands and peat. Developers and contractors were consulted regarding the effectiveness of different approaches; on remedial actions taken during monitoring or observation and on identifying ongoing issues. The research was also used to develop policy and regulatory relevant recommendations.

 
15th March 2022

Applying drinking water treatment residuals to land: opportunities and implications

Applying drinking water treatment residuals to land: opportunities and implications. Cover photographs courtesy of: Robin Waddell and Daniel Gilmour.

In 2018/19, Scottish Water’s treatment processes generated c.29,000 tDS2) of Water Treatment Residuals (WTR). WTR, also termed drinking water treatment sludges or bioresource, are produced due to the addition of chemical coagulants to water. The Scottish Water Bioresource Strategy has identified the need to transition the outlet for WTR from purely land restoration to agricultural land due to the likely significant increase in tonnage of WTR over the next 25 years, increasing landfill charges, reduced lifespan of restoration sites and environmental sustainability. 

This study is designed to support this transition to agricultural land by understanding the implications of applying WTR to land by addressing key knowledge gaps including: what are the benefits and disbenefits of applying drinking water treatment sludges to land? How does this fit in the context of the circular economy in Scotland?  What is best practice in terms of assessment of the suitability for application to land? Which measures could help to mitigate the disbenefits? 

Key findings of the study are that the application of WTR to land has predominately resulted in the improvement in soil physical properties such as water retention, porosity, hydraulic conductivity and P storage capacity without negative impacts on groundwater. However, no significant change in plant yield was reported. Application of WTR to lands with pH<5.5 should be avoided, given the potential for the Al in the WTR to become soluble. Sole application of WTR is deemed to be suitable for land restoration. However, if separate applications of fertilisers such as compost, manure or Wastewater Treatment Residuals (WWTR) are made, WTR application could enhance soil and plant properties in agricultural land and forestry. A user-friendly, decision support tool for guiding the application of WTR to land in Scotland has been developed for end users.  

 
15th March 2022

Pharmaceuticals in the water environment: baseline assessment and recommendations

Pharmaceuticals in the water environment; Cover photos courtesy of: Karin Helwig and Scottish Water

This study carried out by researchers at Glasgow Caledonian University (GCU), with the James Hutton Institute and the Environmental Research Institute (University of the Highlands and Islands) delivered the first national assessment of the emerging area of concern around pharmaceutical pollution of Scotland’s water environment, with an innovative Scottish partnership (One Health Breakthrough Partnership) using results to promote practical actions to reduce this globally recognised public health and environmental issue.

Pharmaceuticals (medicines) enter the water environment when people taking medicines go to the toilet (between 30-100% of a dose is excreted) and when partially used or expired medicines are inappropriately flushed down the toilet instead of being returned to a pharmacy for proper disposal.

Key messages from the study include:

  • Data on 60 medicines in the water environment, known to occur through consumption and inappropriate disposal into wastewater systems, were obtained from a range of sources
  • Nine medicines were recommended for further action to reduce the potential environmental risk
  • The need to promote positive action on medicine use and disposal, to reduce pharmaceutical pollution
 
14th March 2022

Sediment continuity through run-of-river hydropower schemes

Cover photographs courtesy of: cbec

The Scottish Government’s ambition to decarbonise its electricity generation means that run-of-river hydroelectric power schemes are now a feature of many Scottish catchments. The essential requirements of these schemes (adequate hydraulic head and flow) mean that their locations often coincide with important freshwater habitat. A scheme can have various effects on the quality and extent of this habitat, in and downstream of the depleted reach (between the intake and tailrace), and upstream of the impoundment. The interruption of natural sediment movement is one such effect and, if measures to ensure that conveyance is maintained are not included in the design of a scheme, it can have significant and far reaching consequences for habitats, species, channel evolution, and adjacent land. It can also, significantly for the operator, affect the efficiency and profitability of a scheme. The realisation that the need to maintain sediment continuity has not been adequately taken into account for many schemes was the impetus for this project. The research published in this report has led to recommendations for dealing with accumulations of sediment at operational schemes, and for the incorporation of sediment management measures in proposed schemes. The effects of climate change and the biodiversity crisis have increased the imperative for remedial action and to ensure that measures for maintaining sediment movement and other natural processes are incorporated in the design of existing and new schemes.

Pages

Subscribe to CREW | Scotland's Centre of Expertise for Waters RSS